Efficient Feature Fusion for UAV Object Detection
- URL: http://arxiv.org/abs/2501.17983v2
- Date: Mon, 03 Feb 2025 07:04:08 GMT
- Title: Efficient Feature Fusion for UAV Object Detection
- Authors: Xudong Wang, Yaxin Peng, Chaomin Shen,
- Abstract summary: Small objects, in particular, occupy small portions of images, making their accurate detection difficult.
Existing multi-scale feature fusion methods address these challenges by aggregating features across different resolutions.
We propose a novel feature fusion framework specifically designed for UAV object detection tasks.
- Score: 9.632727117779178
- License:
- Abstract: Object detection in unmanned aerial vehicle (UAV) remote sensing images poses significant challenges due to unstable image quality, small object sizes, complex backgrounds, and environmental occlusions. Small objects, in particular, occupy small portions of images, making their accurate detection highly difficult. Existing multi-scale feature fusion methods address these challenges to some extent by aggregating features across different resolutions. However, they often fail to effectively balance the classification and localization performance for small objects, primarily due to insufficient feature representation and imbalanced network information flow. In this paper, we propose a novel feature fusion framework specifically designed for UAV object detection tasks to enhance both localization accuracy and classification performance. The proposed framework integrates hybrid upsampling and downsampling modules, enabling feature maps from different network depths to be flexibly adjusted to arbitrary resolutions. This design facilitates cross-layer connections and multi-scale feature fusion, ensuring improved representation of small objects. Our approach leverages hybrid downsampling to enhance fine-grained feature representation, improving spatial localization of small targets, even under complex conditions. Simultaneously, the upsampling module aggregates global contextual information, optimizing feature consistency across scales and enhancing classification robustness in cluttered scenes. Experimental results on two public UAV datasets demonstrate the effectiveness of the proposed framework. Integrated into the YOLO-v10 model, our method achieves a 2% improvement in average precision (AP) compared to the baseline YOLO-v10 model, while maintaining the same number of parameters. These results highlight the potential of our framework for accurate and efficient UAV object detection.
Related papers
- Efficient Oriented Object Detection with Enhanced Small Object Recognition in Aerial Images [2.9138705529771123]
We present a novel enhancement to the YOLOv8 model, tailored for oriented object detection tasks.
Our model features a wavelet transform-based C2f module for capturing associative features and an Adaptive Scale Feature Pyramid (ASFP) module that leverages P2 layer details.
Our approach provides a more efficient architectural design than DecoupleNet, which has 23.3M parameters, all while maintaining detection accuracy.
arXiv Detail & Related papers (2024-12-17T05:45:48Z) - SCLNet: A Scale-Robust Complementary Learning Network for Object Detection in UAV Images [0.0]
This paper introduces a scale-robust complementary learning network (SCLNet) to address the scale challenges.
One implementation is based on our proposed scale-complementary decoder and scale-complementary loss function.
Another implementation is based on our proposed contrastive complement network and contrastive complement loss function.
arXiv Detail & Related papers (2024-09-11T05:39:25Z) - SOOD++: Leveraging Unlabeled Data to Boost Oriented Object Detection [59.868772767818975]
We propose a simple yet effective Semi-supervised Oriented Object Detection method termed SOOD++.
Specifically, we observe that objects from aerial images are usually arbitrary orientations, small scales, and aggregation.
Extensive experiments conducted on various multi-oriented object datasets under various labeled settings demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-07-01T07:03:51Z) - DASSF: Dynamic-Attention Scale-Sequence Fusion for Aerial Object Detection [6.635903943457569]
The original YOLO algorithm has low overall detection accuracy due to its weak ability to perceive targets of different scales.
This paper proposes a dynamic-attention scale-sequence fusion algorithm (DASSF) for small target detection in aerial images.
Experimental results show that when the DASSF method is applied to YOLOv8, compared to YOLOv8n, the model shows an increase of 9.2% and 2.4% in the mean average precision (mAP)
arXiv Detail & Related papers (2024-06-18T05:26:44Z) - Boost UAV-based Ojbect Detection via Scale-Invariant Feature Disentanglement and Adversarial Learning [18.11107031800982]
We propose to improve single-stage inference accuracy through learning scale-invariant features.
Our approach can effectively improve model accuracy and achieve state-of-the-art (SoTA) performance on two datasets.
arXiv Detail & Related papers (2024-05-24T11:40:22Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - AdaZoom: Adaptive Zoom Network for Multi-Scale Object Detection in Large
Scenes [57.969186815591186]
Detection in large-scale scenes is a challenging problem due to small objects and extreme scale variation.
We propose a novel Adaptive Zoom (AdaZoom) network as a selective magnifier with flexible shape and focal length to adaptively zoom the focus regions for object detection.
arXiv Detail & Related papers (2021-06-19T03:30:22Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
We propose the aggregate interaction modules to integrate the features from adjacent levels.
To obtain more efficient multi-scale features, the self-interaction modules are embedded in each decoder unit.
Experimental results on five benchmark datasets demonstrate that the proposed method without any post-processing performs favorably against 23 state-of-the-art approaches.
arXiv Detail & Related papers (2020-07-17T15:41:37Z) - Underwater object detection using Invert Multi-Class Adaboost with deep
learning [37.14538666012363]
We propose a novel neural network architecture, namely Sample-WeIghted hyPEr Network (SWIPENet), for small object detection.
We show that the proposed SWIPENet+IMA framework achieves better performance in detection accuracy against several state-of-the-art object detection approaches.
arXiv Detail & Related papers (2020-05-23T15:30:38Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.