Identification of Negative Transfers in Multitask Learning Using
Surrogate Models
- URL: http://arxiv.org/abs/2303.14582v2
- Date: Wed, 27 Dec 2023 15:49:14 GMT
- Title: Identification of Negative Transfers in Multitask Learning Using
Surrogate Models
- Authors: Dongyue Li, Huy L. Nguyen, and Hongyang R. Zhang
- Abstract summary: Multitask learning is widely used to train a low-resource target task by augmenting it with multiple related source tasks.
A critical problem in multitask learning is identifying subsets of source tasks that would benefit the target task.
We introduce an efficient procedure to address this problem via surrogate modeling.
- Score: 29.882265735630046
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multitask learning is widely used in practice to train a low-resource target
task by augmenting it with multiple related source tasks. Yet, naively
combining all the source tasks with a target task does not always improve the
prediction performance for the target task due to negative transfers. Thus, a
critical problem in multitask learning is identifying subsets of source tasks
that would benefit the target task. This problem is computationally challenging
since the number of subsets grows exponentially with the number of source
tasks; efficient heuristics for subset selection do not always capture the
relationship between task subsets and multitask learning performances. In this
paper, we introduce an efficient procedure to address this problem via
surrogate modeling. In surrogate modeling, we sample (random) subsets of source
tasks and precompute their multitask learning performances. Then, we
approximate the precomputed performances with a linear regression model that
can also predict the multitask performance of unseen task subsets. We show
theoretically and empirically that fitting this model only requires sampling
linearly many subsets in the number of source tasks. The fitted model provides
a relevance score between each source and target task. We use the relevance
scores to perform subset selection for multitask learning by thresholding.
Through extensive experiments, we show that our approach predicts negative
transfers from multiple source tasks to target tasks much more accurately than
existing task affinity measures. Additionally, we demonstrate that for several
weak supervision datasets, our approach consistently improves upon existing
optimization methods for multitask learning.
Related papers
- Task Selection and Assignment for Multi-modal Multi-task Dialogue Act
Classification with Non-stationary Multi-armed Bandits [11.682678945754837]
Multi-task learning (MTL) aims to improve the performance of a primary task by jointly learning with related auxiliary tasks.
Previous studies suggest that such a random selection of tasks may not be helpful, and can even be harmful to performance.
This paper proposes a method for selecting and assigning tasks based on non-stationary multi-armed bandits.
arXiv Detail & Related papers (2023-09-18T14:51:51Z) - Multi-task Bias-Variance Trade-off Through Functional Constraints [102.64082402388192]
Multi-task learning aims to acquire a set of functions that perform well for diverse tasks.
In this paper we draw intuition from the two extreme learning scenarios -- a single function for all tasks, and a task-specific function that ignores the other tasks.
We introduce a constrained learning formulation that enforces domain specific solutions to a central function.
arXiv Detail & Related papers (2022-10-27T16:06:47Z) - Task Compass: Scaling Multi-task Pre-training with Task Prefix [122.49242976184617]
Existing studies show that multi-task learning with large-scale supervised tasks suffers from negative effects across tasks.
We propose a task prefix guided multi-task pre-training framework to explore the relationships among tasks.
Our model can not only serve as the strong foundation backbone for a wide range of tasks but also be feasible as a probing tool for analyzing task relationships.
arXiv Detail & Related papers (2022-10-12T15:02:04Z) - An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale
Multitask Learning Systems [4.675744559395732]
Multitask learning assumes that models capable of learning from multiple tasks can achieve better quality and efficiency via knowledge transfer.
State of the art ML models rely on high customization for each task and leverage size and data scale rather than scaling the number of tasks.
We propose an evolutionary method that can generate a large scale multitask model and can support the dynamic and continuous addition of new tasks.
arXiv Detail & Related papers (2022-05-25T13:10:47Z) - Sparsely Activated Mixture-of-Experts are Robust Multi-Task Learners [67.5865966762559]
We study whether sparsely activated Mixture-of-Experts (MoE) improve multi-task learning.
We devise task-aware gating functions to route examples from different tasks to specialized experts.
This results in a sparsely activated multi-task model with a large number of parameters, but with the same computational cost as that of a dense model.
arXiv Detail & Related papers (2022-04-16T00:56:12Z) - Active Multi-Task Representation Learning [50.13453053304159]
We give the first formal study on resource task sampling by leveraging the techniques from active learning.
We propose an algorithm that iteratively estimates the relevance of each source task to the target task and samples from each source task based on the estimated relevance.
arXiv Detail & Related papers (2022-02-02T08:23:24Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
Multi-task learning aims to explore task relatedness to improve individual tasks.
We propose variational multi-task learning (VMTL), a general probabilistic inference framework for learning multiple related tasks.
arXiv Detail & Related papers (2021-11-09T18:49:45Z) - Reparameterizing Convolutions for Incremental Multi-Task Learning
without Task Interference [75.95287293847697]
Two common challenges in developing multi-task models are often overlooked in literature.
First, enabling the model to be inherently incremental, continuously incorporating information from new tasks without forgetting the previously learned ones (incremental learning)
Second, eliminating adverse interactions amongst tasks, which has been shown to significantly degrade the single-task performance in a multi-task setup (task interference)
arXiv Detail & Related papers (2020-07-24T14:44:46Z) - Knowledge Distillation for Multi-task Learning [38.20005345733544]
Multi-task learning (MTL) is to learn one single model that performs multiple tasks for achieving good performance on all tasks and lower cost on computation.
Learning such a model requires to jointly optimize losses of a set of tasks with different difficulty levels, magnitudes, and characteristics.
We propose a knowledge distillation based method in this work to address the imbalance problem in multi-task learning.
arXiv Detail & Related papers (2020-07-14T08:02:42Z) - Modelling Latent Skills for Multitask Language Generation [15.126163032403811]
We present a generative model for multitask conditional language generation.
Our guiding hypothesis is that a shared set of latent skills underlies many disparate language generation tasks.
We instantiate this task embedding space as a latent variable in a latent variable sequence-to-sequence model.
arXiv Detail & Related papers (2020-02-21T20:39:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.