Task Selection and Assignment for Multi-modal Multi-task Dialogue Act
Classification with Non-stationary Multi-armed Bandits
- URL: http://arxiv.org/abs/2309.09832v2
- Date: Thu, 11 Jan 2024 13:18:30 GMT
- Title: Task Selection and Assignment for Multi-modal Multi-task Dialogue Act
Classification with Non-stationary Multi-armed Bandits
- Authors: Xiangheng He, Junjie Chen, Bj\"orn W. Schuller
- Abstract summary: Multi-task learning (MTL) aims to improve the performance of a primary task by jointly learning with related auxiliary tasks.
Previous studies suggest that such a random selection of tasks may not be helpful, and can even be harmful to performance.
This paper proposes a method for selecting and assigning tasks based on non-stationary multi-armed bandits.
- Score: 11.682678945754837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-task learning (MTL) aims to improve the performance of a primary task
by jointly learning with related auxiliary tasks. Traditional MTL methods
select tasks randomly during training. However, both previous studies and our
results suggest that such a random selection of tasks may not be helpful, and
can even be harmful to performance. Therefore, new strategies for task
selection and assignment in MTL need to be explored. This paper studies the
multi-modal, multi-task dialogue act classification task, and proposes a method
for selecting and assigning tasks based on non-stationary multi-armed bandits
(MAB) with discounted Thompson Sampling (TS) using Gaussian priors. Our
experimental results show that in different training stages, different tasks
have different utility. Our proposed method can effectively identify the task
utility, actively avoid useless or harmful tasks, and realise the task
assignment during training. Our proposed method is significantly superior in
terms of UAR and F1 to the single-task and multi-task baselines with p-values <
0.05. Further analysis of experiments indicates that for the dataset with the
data imbalance problem, our proposed method has significantly higher stability
and can obtain consistent and decent performance for minority classes. Our
proposed method is superior to the current state-of-the-art model.
Related papers
- Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
We propose a data curriculum method, namely Data-CUBE, that arranges the orders of all the multi-task data for training.
In the task level, we aim to find the optimal task order to minimize the total cross-task interference risk.
In the instance level, we measure the difficulty of all instances per task, then divide them into the easy-to-difficult mini-batches for training.
arXiv Detail & Related papers (2024-01-07T18:12:20Z) - Active Instruction Tuning: Improving Cross-Task Generalization by
Training on Prompt Sensitive Tasks [101.40633115037983]
Instruction tuning (IT) achieves impressive zero-shot generalization results by training large language models (LLMs) on a massive amount of diverse tasks with instructions.
How to select new tasks to improve the performance and generalizability of IT models remains an open question.
We propose active instruction tuning based on prompt uncertainty, a novel framework to identify informative tasks, and then actively tune the models on the selected tasks.
arXiv Detail & Related papers (2023-11-01T04:40:05Z) - Identification of Negative Transfers in Multitask Learning Using
Surrogate Models [29.882265735630046]
Multitask learning is widely used to train a low-resource target task by augmenting it with multiple related source tasks.
A critical problem in multitask learning is identifying subsets of source tasks that would benefit the target task.
We introduce an efficient procedure to address this problem via surrogate modeling.
arXiv Detail & Related papers (2023-03-25T23:16:11Z) - Task Aware Feature Extraction Framework for Sequential Dependence
Multi-Task Learning [1.0765359420035392]
We analyze sequential dependence MTL from rigorous mathematical perspective.
We propose a Task Aware Feature Extraction (TAFE) framework for sequential dependence MTL.
arXiv Detail & Related papers (2023-01-06T13:12:59Z) - Multi-task Active Learning for Pre-trained Transformer-based Models [22.228551277598804]
Multi-task learning, in which several tasks are jointly learned by a single model, allows NLP models to share information from multiple annotations.
This technique requires annotating the same text with multiple annotation schemes which may be costly and laborious.
Active learning (AL) has been demonstrated to optimize annotation processes by iteratively selecting unlabeled examples.
arXiv Detail & Related papers (2022-08-10T14:54:13Z) - Selecting task with optimal transport self-supervised learning for
few-shot classification [15.088213168796772]
Few-Shot classification aims at solving problems that only a few samples are available in the training process.
We propose a novel task selecting algorithm, named Optimal Transport Task Selecting (OTTS), to construct a training set by selecting similar tasks for Few-Shot learning.
OTTS measures the task similarity by calculating the optimal transport distance and completes the model training via a self-supervised strategy.
arXiv Detail & Related papers (2022-04-01T08:45:29Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing (TAPS) is a method for tuning a base model to a new task by adaptively modifying a small, task-specific subset of layers.
Compared to other methods, TAPS retains high accuracy on downstream tasks while introducing few task-specific parameters.
We evaluate our method on a suite of fine-tuning tasks and architectures (ResNet, DenseNet, ViT) and show that it achieves state-of-the-art performance while being simple to implement.
arXiv Detail & Related papers (2022-03-30T23:16:07Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
Multi-task learning aims to explore task relatedness to improve individual tasks.
We propose variational multi-task learning (VMTL), a general probabilistic inference framework for learning multiple related tasks.
arXiv Detail & Related papers (2021-11-09T18:49:45Z) - Efficiently Identifying Task Groupings for Multi-Task Learning [55.80489920205404]
Multi-task learning can leverage information learned by one task to benefit the training of other tasks.
We suggest an approach to select which tasks should train together in multi-task learning models.
Our method determines task groupings in a single training run by co-training all tasks together and quantifying the effect to which one task's gradient would affect another task's loss.
arXiv Detail & Related papers (2021-09-10T02:01:43Z) - Adaptive Task Sampling for Meta-Learning [79.61146834134459]
Key idea of meta-learning for few-shot classification is to mimic the few-shot situations faced at test time.
We propose an adaptive task sampling method to improve the generalization performance.
arXiv Detail & Related papers (2020-07-17T03:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.