論文の概要: Joint fMRI Decoding and Encoding with Latent Embedding Alignment
- arxiv url: http://arxiv.org/abs/2303.14730v2
- Date: Mon, 5 Jun 2023 02:22:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-07 02:19:26.250467
- Title: Joint fMRI Decoding and Encoding with Latent Embedding Alignment
- Title(参考訳): 潜在埋め込みアライメントを用いた関節fmriデコードとエンコード
- Authors: Xuelin Qian, Yikai Wang, Yanwei Fu, Xinwei Sun, Xiangyang Xue,
Jianfeng Feng
- Abstract要約: 我々はfMRIデコーディングと符号化の両方に対処する統合フレームワークを導入する。
本モデルでは、fMRI信号から視覚刺激を同時に回復し、統合された枠組み内の画像から脳活動を予測する。
- 参考スコア(独自算出の注目度): 77.66508125297754
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The connection between brain activity and corresponding visual stimuli is
crucial in comprehending the human brain. While deep generative models have
exhibited advancement in recovering brain recordings by generating images
conditioned on fMRI signals, accomplishing high-quality generation with
consistent semantics continues to pose challenges. Moreover, the prediction of
brain activity from visual stimuli remains a formidable undertaking. In this
paper, we introduce a unified framework that addresses both fMRI decoding and
encoding. Commencing with the establishment of two latent spaces capable of
representing and reconstructing fMRI signals and visual images, respectively,
we proceed to align the fMRI signals and visual images within the latent space,
thereby enabling a bidirectional transformation between the two domains. Our
Latent Embedding Alignment (LEA) model concurrently recovers visual stimuli
from fMRI signals and predicts brain activity from images within a unified
framework. The performance of LEA surpasses that of existing methods on
multiple benchmark fMRI decoding and encoding datasets. By integrating fMRI
decoding and encoding, LEA offers a comprehensive solution for modeling the
intricate relationship between brain activity and visual stimuli.
- Abstract(参考訳): 脳の活動と対応する視覚刺激の関係は、人間の脳を理解する上で重要である。
深部生成モデルではfMRI信号に条件付き画像を生成することで脳記録の回復が進んでいるが、一貫性のあるセマンティクスによる高品質な生成は引き続き課題を呈している。
さらに、視覚刺激による脳活動の予測は、依然として大きな課題である。
本稿では,fMRIデコーディングと符号化の両方に対処する統合フレームワークを提案する。
fmri信号と視覚画像の表現と再構成が可能な2つの潜在空間の確立に着手し、潜在空間内のfmri信号と視覚画像の整合を進め、2つの領域間の双方向変換を可能にした。
我々の潜在埋め込みアライメント(LEA)モデルは、fMRI信号から視覚刺激を同時に回復し、統合されたフレームワーク内の画像から脳活動を予測する。
LEAの性能は、複数のベンチマークfMRIデコードおよびデータセットの符号化における既存の手法を上回る。
fMRIデコーディングと符号化を統合することで、LEAは脳の活動と視覚刺激の複雑な関係をモデル化するための包括的なソリューションを提供する。
関連論文リスト
- MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
本稿では,MindFormer を用いたマルチオブジェクト fMRI 信号のセマンティックアライメント手法を提案する。
このモデルは、fMRIから画像生成のための安定拡散モデルや、fMRIからテキスト生成のための大規模言語モデル(LLM)の条件付けに使用できるfMRI条件付き特徴ベクトルを生成するように設計されている。
実験の結果,MindFormerは意味的に一貫した画像とテキストを異なる主題にわたって生成することがわかった。
論文 参考訳(メタデータ) (2024-05-28T00:36:25Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - NeuroCine: Decoding Vivid Video Sequences from Human Brain Activties [23.893490180665996]
本稿では,fMRIデータを復号化するための新たな二相フレームワークであるNeuroCineを紹介する。
公開されているfMRIデータセットでテストした結果,有望な結果が得られた。
このモデルが既存の脳構造や機能と一致し,その生物学的妥当性と解釈可能性を示すことが示唆された。
論文 参考訳(メタデータ) (2024-02-02T17:34:25Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - Decoding Realistic Images from Brain Activity with Contrastive
Self-supervision and Latent Diffusion [29.335943994256052]
ヒトの脳活動から視覚刺激を再構築することは、脳の視覚系を理解する上で有望な機会となる。
機能的磁気共鳴イメージング(fMRI)記録から現実的な画像をデコードする2相フレームワークContrast and Diffuse(CnD)を提案する。
論文 参考訳(メタデータ) (2023-09-30T09:15:22Z) - MindDiffuser: Controlled Image Reconstruction from Human Brain Activity
with Semantic and Structural Diffusion [7.597218661195779]
我々はMindDiffuserと呼ばれる2段階の画像再構成モデルを提案する。
ステージ1では、VQ-VAE潜在表現とfMRIからデコードされたCLIPテキスト埋め込みが安定拡散される。
ステージ2では、fMRIからデコードされたCLIP視覚特徴を監視情報として利用し、バックパゲーションによりステージ1でデコードされた2つの特徴ベクトルを継続的に調整し、構造情報を整列させる。
論文 参考訳(メタデータ) (2023-08-08T13:28:34Z) - Contrast, Attend and Diffuse to Decode High-Resolution Images from Brain
Activities [31.448924808940284]
2相fMRI表現学習フレームワークを提案する。
第1フェーズでは、double-contrastive Mask Auto-encoderを提案してfMRI機能学習者を事前訓練し、識別表現を学習する。
第2フェーズでは、イメージオートエンコーダからのガイダンスで視覚的再構成に最も有用な神経活性化パターンに参加するように、特徴学習者に調整する。
論文 参考訳(メタデータ) (2023-05-26T19:16:23Z) - Controllable Mind Visual Diffusion Model [58.83896307930354]
脳信号の可視化は、人間の視覚システムとコンピュータビジョンモデルの間の重要なインターフェースとして機能する活発な研究領域として登場した。
我々は、制御可能なマインドビジュアルモデル拡散(CMVDM)と呼ばれる新しいアプローチを提案する。
CMVDMは属性アライメントとアシスタントネットワークを用いてfMRIデータから意味情報とシルエット情報を抽出する。
そして、制御モデルを利用して抽出した情報を画像合成に活用し、セマンティクスやシルエットの観点から視覚刺激によく似た画像を生成する。
論文 参考訳(メタデータ) (2023-05-17T11:36:40Z) - BrainCLIP: Bridging Brain and Visual-Linguistic Representation Via CLIP
for Generic Natural Visual Stimulus Decoding [51.911473457195555]
BrainCLIPはタスクに依存しないfMRIベースの脳復号モデルである。
脳の活動、画像、およびテキストの間のモダリティギャップを埋める。
BrainCLIPは、高い意味的忠実度で視覚刺激を再構築することができる。
論文 参考訳(メタデータ) (2023-02-25T03:28:54Z) - Mind Reader: Reconstructing complex images from brain activities [16.78619734818198]
我々はfMRI(機能的磁気共鳴画像)信号から複雑な画像刺激を再構成することに集中する。
単一の物体や単純な形状で画像を再構成する従来の研究とは異なり、本研究は意味論に富んだイメージ刺激を再構成することを目的としている。
脳の信号を直接画像に翻訳するよりも、追加のテキストモダリティを組み込むことは、再建問題にとって有益である。
論文 参考訳(メタデータ) (2022-09-30T06:32:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。