論文の概要: $\Delta$-Patching: A Framework for Rapid Adaptation of Pre-trained
Convolutional Networks without Base Performance Loss
- arxiv url: http://arxiv.org/abs/2303.14772v2
- Date: Thu, 21 Sep 2023 08:56:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-22 19:46:17.670252
- Title: $\Delta$-Patching: A Framework for Rapid Adaptation of Pre-trained
Convolutional Networks without Base Performance Loss
- Title(参考訳): $\Delta$-Patching: ベースパフォーマンス損失のない事前トレーニングされた畳み込みネットワークの迅速な適応のためのフレームワーク
- Authors: Chaitanya Devaguptapu, Samarth Sinha, K J Joseph, Vineeth N
Balasubramanian, Animesh Garg
- Abstract要約: 大規模なデータセットで事前トレーニングされたモデルはしばしば、時間とともにやってくる新しいタスクやデータセットをサポートするように微調整される。
モデルコピーを格納することなく、効率よく微調整ニューラルネットワークモデルに$Delta$-Patchingを提案する。
我々の実験によると、$Delta$-Networksは、トレーニングされるパラメータのごく一部しか必要とせず、初期のモデルパッチ作業より優れています。
- 参考スコア(独自算出の注目度): 71.46601663956521
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Models pre-trained on large-scale datasets are often fine-tuned to support
newer tasks and datasets that arrive over time. This process necessitates
storing copies of the model over time for each task that the pre-trained model
is fine-tuned to. Building on top of recent model patching work, we propose
$\Delta$-Patching for fine-tuning neural network models in an efficient manner,
without the need to store model copies. We propose a simple and lightweight
method called $\Delta$-Networks to achieve this objective. Our comprehensive
experiments across setting and architecture variants show that
$\Delta$-Networks outperform earlier model patching work while only requiring a
fraction of parameters to be trained. We also show that this approach can be
used for other problem settings such as transfer learning and zero-shot domain
adaptation, as well as other tasks such as detection and segmentation.
- Abstract(参考訳): 大規模なデータセットで事前トレーニングされたモデルはしばしば、時間とともにやってくる新しいタスクやデータセットをサポートするように微調整される。
このプロセスは、事前訓練されたモデルが微調整された各タスクに対して、時間とともにモデルのコピーを保存する必要がある。
最近のモデルパッチ作業に基づいて、モデルのコピーを保存することなく、効率的にニューラルネットワークモデルの微調整を行うための$\delta$-patchingを提案する。
この目的を達成するために,$\Delta$-Networksと呼ばれるシンプルで軽量な手法を提案する。
設定とアーキテクチャのバリエーションに関する包括的な実験によると、$\Delta$-Networksは、トレーニングされるパラメータのごく一部だけを必要としながら、以前のモデルパッチ処理よりも優れている。
また、この手法は、転送学習やゼロショットドメイン適応といった他の問題設定や、検出やセグメンテーションといった他のタスクにも適用可能であることを示す。
関連論文リスト
- FINE: Factorizing Knowledge for Initialization of Variable-sized Diffusion Models [35.40065954148091]
FINEはLearngeneフレームワークに基づく、事前訓練されたモデルを利用した下流ネットワークの初期化手法である。
事前学習された知識を行列の積(例えば$U$, $Sigma$, $V$)に分解する。
これは、特により小さなモデルにおいて、直接事前訓練よりも一貫して優れており、可変モデルのサイズで最先端の結果が得られる。
論文 参考訳(メタデータ) (2024-09-28T08:57:17Z) - Efficiently Robustify Pre-trained Models [18.392732966487582]
大規模モデルの現実的な設定に対する堅牢性は、いまだ探索されていないトピックである。
まず、異なる摂動とデータセットの下でこれらのモデルのパフォーマンスをベンチマークします。
続いて、大規模ネットワークにおいて、モデルファインチューニングに基づく既存のロバスト化スキームが拡張性に欠ける可能性について論じる。
論文 参考訳(メタデータ) (2023-09-14T08:07:49Z) - One-Shot Pruning for Fast-adapting Pre-trained Models on Devices [28.696989086706186]
大規模な事前訓練モデルが下流タスクの解決に成功している。
これらのモデルを低機能デバイスにデプロイするには、モデルプルーニングのような効果的なアプローチが必要である。
そこで本研究では,類似タスクの抽出知識を活用して,事前学習したモデルからサブネットワークを抽出する,スケーラブルなワンショットプルーニング手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T06:44:47Z) - Voting from Nearest Tasks: Meta-Vote Pruning of Pre-trained Models for
Downstream Tasks [55.431048995662714]
我々は、類似タスクの刈り取られたモデルから、新しいタスクのための小さなモデルを作成する。
このモデルに関するいくつかの微調整ステップは、新しいタスクに対して有望なプルーンドモデルを生成するのに十分であることを示す。
我々は, 単純だが効果的な'Meta-Vote Pruning (MVP)' 手法を開発した。
論文 参考訳(メタデータ) (2023-01-27T06:49:47Z) - Prompt Tuning for Parameter-efficient Medical Image Segmentation [79.09285179181225]
2つの医用画像データセットのセマンティックセグメンテーションにパラメータ効率が良いが効果的な適応を実現するために,いくつかのコントリビューションを提案し,検討する。
我々はこのアーキテクチャを、オンライン生成プロトタイプへの割り当てに基づく専用密集型セルフスーパービジョンスキームで事前訓練する。
得られたニューラルネットワークモデルにより、完全に微調整されたモデルとパラメータに適応したモデルとのギャップを緩和できることを実証する。
論文 参考訳(メタデータ) (2022-11-16T21:55:05Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing(TAPS)は、階層の小さなタスク固有のサブセットを適応的に修正することで、ベースモデルを新しいタスクにチューニングする手法である。
他の手法と比較して、TAPSはダウンストリームタスクに対して高い精度を維持し、タスク固有のパラメータは少ない。
我々は,タスクやアーキテクチャ(ResNet,DenseNet,ViT)を微調整して評価し,実装が簡単でありながら最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2022-03-30T23:16:07Z) - Deep Ensembles for Low-Data Transfer Learning [21.578470914935938]
我々は、事前訓練されたモデルからアンサンブルを作成する様々な方法を研究する。
プレトレーニング自体が多様性の優れた源であることが示される。
本稿では,任意の下流データセットに対して,事前学習したモデルのサブセットを効率的に同定する実用的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-14T07:59:00Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
異種情報ネットワークの特徴を捉えるための自己教師付き事前学習・微調整フレームワークPF-HINを提案する。
PF-HINは4つのデータセットにおいて、各タスクにおける最先端の代替よりも一貫して、大幅に優れています。
論文 参考訳(メタデータ) (2020-07-07T03:36:28Z) - Parameter-Efficient Transfer from Sequential Behaviors for User Modeling
and Recommendation [111.44445634272235]
本稿では,PeterRecと呼ばれるパラメータ効率のよい移動学習アーキテクチャを提案する。
PeterRecは、トレーニング済みのパラメータを、一連の再学習ニューラルネットワークを注入することで、微調整中に修正されないようにする。
我々は5つの下流タスクにおいて学習したユーザ表現の有効性を示すために、広範囲な実験的アブレーションを行う。
論文 参考訳(メタデータ) (2020-01-13T14:09:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。