$\Delta$-Patching: A Framework for Rapid Adaptation of Pre-trained
Convolutional Networks without Base Performance Loss
- URL: http://arxiv.org/abs/2303.14772v2
- Date: Thu, 21 Sep 2023 08:56:46 GMT
- Title: $\Delta$-Patching: A Framework for Rapid Adaptation of Pre-trained
Convolutional Networks without Base Performance Loss
- Authors: Chaitanya Devaguptapu, Samarth Sinha, K J Joseph, Vineeth N
Balasubramanian, Animesh Garg
- Abstract summary: Models pre-trained on large-scale datasets are often fine-tuned to support newer tasks and datasets that arrive over time.
We propose $Delta$-Patching for fine-tuning neural network models in an efficient manner, without the need to store model copies.
Our experiments show that $Delta$-Networks outperform earlier model patching work while only requiring a fraction of parameters to be trained.
- Score: 71.46601663956521
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Models pre-trained on large-scale datasets are often fine-tuned to support
newer tasks and datasets that arrive over time. This process necessitates
storing copies of the model over time for each task that the pre-trained model
is fine-tuned to. Building on top of recent model patching work, we propose
$\Delta$-Patching for fine-tuning neural network models in an efficient manner,
without the need to store model copies. We propose a simple and lightweight
method called $\Delta$-Networks to achieve this objective. Our comprehensive
experiments across setting and architecture variants show that
$\Delta$-Networks outperform earlier model patching work while only requiring a
fraction of parameters to be trained. We also show that this approach can be
used for other problem settings such as transfer learning and zero-shot domain
adaptation, as well as other tasks such as detection and segmentation.
Related papers
- FINE: Factorizing Knowledge for Initialization of Variable-sized Diffusion Models [35.40065954148091]
FINE is a method based on the Learngene framework to initializing downstream networks leveraging pre-trained models.
It decomposes pre-trained knowledge into the product of matrices (i.e., $U$, $Sigma$, and $V$), where $U$ and $V$ are shared across network blocks as learngenes''
It consistently outperforms direct pre-training, particularly for smaller models, achieving state-of-the-art results across variable model sizes.
arXiv Detail & Related papers (2024-09-28T08:57:17Z) - Efficiently Robustify Pre-trained Models [18.392732966487582]
robustness of large scale models towards real-world settings is still a less-explored topic.
We first benchmark the performance of these models under different perturbations and datasets.
We then discuss on how complete model fine-tuning based existing robustification schemes might not be a scalable option given very large scale networks.
arXiv Detail & Related papers (2023-09-14T08:07:49Z) - One-Shot Pruning for Fast-adapting Pre-trained Models on Devices [28.696989086706186]
Large-scale pre-trained models have been remarkably successful in resolving downstream tasks.
deploying these models on low-capability devices still requires an effective approach, such as model pruning.
We present a scalable one-shot pruning method that leverages pruned knowledge of similar tasks to extract a sub-network from the pre-trained model for a new task.
arXiv Detail & Related papers (2023-07-10T06:44:47Z) - Voting from Nearest Tasks: Meta-Vote Pruning of Pre-trained Models for
Downstream Tasks [55.431048995662714]
We create a small model for a new task from the pruned models of similar tasks.
We show that a few fine-tuning steps on this model suffice to produce a promising pruned-model for the new task.
We develop a simple but effective ''Meta-Vote Pruning (MVP)'' method that significantly reduces the pruning iterations for a new task.
arXiv Detail & Related papers (2023-01-27T06:49:47Z) - Prompt Tuning for Parameter-efficient Medical Image Segmentation [79.09285179181225]
We propose and investigate several contributions to achieve a parameter-efficient but effective adaptation for semantic segmentation on two medical imaging datasets.
We pre-train this architecture with a dedicated dense self-supervision scheme based on assignments to online generated prototypes.
We demonstrate that the resulting neural network model is able to attenuate the gap between fully fine-tuned and parameter-efficiently adapted models.
arXiv Detail & Related papers (2022-11-16T21:55:05Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing (TAPS) is a method for tuning a base model to a new task by adaptively modifying a small, task-specific subset of layers.
Compared to other methods, TAPS retains high accuracy on downstream tasks while introducing few task-specific parameters.
We evaluate our method on a suite of fine-tuning tasks and architectures (ResNet, DenseNet, ViT) and show that it achieves state-of-the-art performance while being simple to implement.
arXiv Detail & Related papers (2022-03-30T23:16:07Z) - Deep Ensembles for Low-Data Transfer Learning [21.578470914935938]
We study different ways of creating ensembles from pre-trained models.
We show that the nature of pre-training itself is a performant source of diversity.
We propose a practical algorithm that efficiently identifies a subset of pre-trained models for any downstream dataset.
arXiv Detail & Related papers (2020-10-14T07:59:00Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
We propose a self-supervised pre-training and fine-tuning framework, PF-HIN, to capture the features of a heterogeneous information network.
PF-HIN consistently and significantly outperforms state-of-the-art alternatives on each of these tasks, on four datasets.
arXiv Detail & Related papers (2020-07-07T03:36:28Z) - Parameter-Efficient Transfer from Sequential Behaviors for User Modeling
and Recommendation [111.44445634272235]
In this paper, we develop a parameter efficient transfer learning architecture, termed as PeterRec.
PeterRec allows the pre-trained parameters to remain unaltered during fine-tuning by injecting a series of re-learned neural networks.
We perform extensive experimental ablation to show the effectiveness of the learned user representation in five downstream tasks.
arXiv Detail & Related papers (2020-01-13T14:09:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.