DANI-Net: Uncalibrated Photometric Stereo by Differentiable Shadow
Handling, Anisotropic Reflectance Modeling, and Neural Inverse Rendering
- URL: http://arxiv.org/abs/2303.15101v2
- Date: Tue, 28 Mar 2023 07:14:47 GMT
- Title: DANI-Net: Uncalibrated Photometric Stereo by Differentiable Shadow
Handling, Anisotropic Reflectance Modeling, and Neural Inverse Rendering
- Authors: Zongrui Li, Qian Zheng, Boxin Shi, Gang Pan, Xudong Jiang
- Abstract summary: Uncalibrated photometric stereo (UPS) is challenging due to the inherent ambiguity brought by the unknown light.
We propose DANI-Net, an inverse rendering framework with differentiable shadow handling and anisotropic reflectance modeling.
Our network benefits from cues of shadow and anisotropic reflectance through two differentiable paths.
- Score: 75.86523223933912
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncalibrated photometric stereo (UPS) is challenging due to the inherent
ambiguity brought by the unknown light. Although the ambiguity is alleviated on
non-Lambertian objects, the problem is still difficult to solve for more
general objects with complex shapes introducing irregular shadows and general
materials with complex reflectance like anisotropic reflectance. To exploit
cues from shadow and reflectance to solve UPS and improve performance on
general materials, we propose DANI-Net, an inverse rendering framework with
differentiable shadow handling and anisotropic reflectance modeling. Unlike
most previous methods that use non-differentiable shadow maps and assume
isotropic material, our network benefits from cues of shadow and anisotropic
reflectance through two differentiable paths. Experiments on multiple
real-world datasets demonstrate our superior and robust performance.
Related papers
- Photometric Inverse Rendering: Shading Cues Modeling and Surface Reflectance Regularization [46.146783750386994]
We propose a new method for neural inverse rendering.
Our method jointly optimize the light source position to account for the self-shadows in images.
To enhance surface reflectance decomposition, we introduce a new regularization.
arXiv Detail & Related papers (2024-08-13T11:39:14Z) - NeRSP: Neural 3D Reconstruction for Reflective Objects with Sparse Polarized Images [62.752710734332894]
NeRSP is a Neural 3D reconstruction technique for Reflective surfaces with Sparse Polarized images.
We derive photometric and geometric cues from the polarimetric image formation model and multiview azimuth consistency.
We achieve the state-of-the-art surface reconstruction results with only 6 views as input.
arXiv Detail & Related papers (2024-06-11T09:53:18Z) - NeISF: Neural Incident Stokes Field for Geometry and Material Estimation [50.588983686271284]
Multi-view inverse rendering is the problem of estimating the scene parameters such as shapes, materials, or illuminations from a sequence of images captured under different viewpoints.
We propose Neural Incident Stokes Fields (NeISF), a multi-view inverse framework that reduces ambiguities using polarization cues.
arXiv Detail & Related papers (2023-11-22T06:28:30Z) - NePF: Neural Photon Field for Single-Stage Inverse Rendering [6.977356702921476]
We present a novel single-stage framework, Neural Photon Field (NePF), to address the ill-posed inverse rendering from multi-view images.
NePF achieves this unification by fully utilizing the physical implication behind the weight function of neural implicit surfaces.
We evaluate our method on both real and synthetic datasets.
arXiv Detail & Related papers (2023-11-20T06:15:46Z) - SIRe-IR: Inverse Rendering for BRDF Reconstruction with Shadow and
Illumination Removal in High-Illuminance Scenes [51.50157919750782]
We present SIRe-IR, an implicit neural rendering inverse approach that decomposes the scene into environment map, albedo, and roughness.
By accurately modeling the indirect radiance field, normal, visibility, and direct light simultaneously, we are able to remove both shadows and indirect illumination.
Even in the presence of intense illumination, our method recovers high-quality albedo and roughness with no shadow interference.
arXiv Detail & Related papers (2023-10-19T10:44:23Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z) - Efficient and Differentiable Shadow Computation for Inverse Problems [64.70468076488419]
Differentiable geometric computation has received increasing interest for image-based inverse problems.
We propose an efficient yet efficient approach for differentiable visibility and soft shadow computation.
As our formulation is differentiable, it can be used to solve inverse problems such as texture, illumination, rigid pose, and deformation recovery from images.
arXiv Detail & Related papers (2021-04-01T09:29:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.