NePF: Neural Photon Field for Single-Stage Inverse Rendering
- URL: http://arxiv.org/abs/2311.11555v1
- Date: Mon, 20 Nov 2023 06:15:46 GMT
- Title: NePF: Neural Photon Field for Single-Stage Inverse Rendering
- Authors: Tuen-Yue Tsui and Qin Zou
- Abstract summary: We present a novel single-stage framework, Neural Photon Field (NePF), to address the ill-posed inverse rendering from multi-view images.
NePF achieves this unification by fully utilizing the physical implication behind the weight function of neural implicit surfaces.
We evaluate our method on both real and synthetic datasets.
- Score: 6.977356702921476
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel single-stage framework, Neural Photon Field (NePF), to
address the ill-posed inverse rendering from multi-view images. Contrary to
previous methods that recover the geometry, material, and illumination in
multiple stages and extract the properties from various multi-layer perceptrons
across different neural fields, we question such complexities and introduce our
method - a single-stage framework that uniformly recovers all properties. NePF
achieves this unification by fully utilizing the physical implication behind
the weight function of neural implicit surfaces and the view-dependent
radiance. Moreover, we introduce an innovative coordinate-based illumination
model for rapid volume physically-based rendering. To regularize this
illumination, we implement the subsurface scattering model for diffuse
estimation. We evaluate our method on both real and synthetic datasets. The
results demonstrate the superiority of our approach in recovering high-fidelity
geometry and visual-plausible material attributes.
Related papers
- Anisotropic Neural Representation Learning for High-Quality Neural
Rendering [0.0]
We propose an anisotropic neural representation learning method that utilizes learnable view-dependent features to improve scene representation and reconstruction.
Our method is flexiable and can be plugged into NeRF-based frameworks.
arXiv Detail & Related papers (2023-11-30T07:29:30Z) - NeISF: Neural Incident Stokes Field for Geometry and Material Estimation [50.588983686271284]
Multi-view inverse rendering is the problem of estimating the scene parameters such as shapes, materials, or illuminations from a sequence of images captured under different viewpoints.
We propose Neural Incident Stokes Fields (NeISF), a multi-view inverse framework that reduces ambiguities using polarization cues.
arXiv Detail & Related papers (2023-11-22T06:28:30Z) - NeuS-PIR: Learning Relightable Neural Surface using Pre-Integrated Rendering [23.482941494283978]
This paper presents a method, namely NeuS-PIR, for recovering relightable neural surfaces from multi-view images or video.
Unlike methods based on NeRF and discrete meshes, our method utilizes implicit neural surface representation to reconstruct high-quality geometry.
Our method enables advanced applications such as relighting, which can be seamlessly integrated with modern graphics engines.
arXiv Detail & Related papers (2023-06-13T09:02:57Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
TensoIR is a novel inverse rendering approach based on tensor factorization and neural fields.
TensoRF is a state-of-the-art approach for radiance field modeling.
arXiv Detail & Related papers (2023-04-24T21:39:13Z) - NeILF++: Inter-Reflectable Light Fields for Geometry and Material
Estimation [36.09503501647977]
We formulate the lighting of a static scene as one neural incident light field (NeILF) and one outgoing neural radiance field (NeRF)
The proposed method is able to achieve state-of-the-art results in terms of geometry reconstruction quality, material estimation accuracy, and the fidelity of novel view rendering.
arXiv Detail & Related papers (2023-03-30T04:59:48Z) - GM-NeRF: Learning Generalizable Model-based Neural Radiance Fields from
Multi-view Images [79.39247661907397]
We introduce an effective framework Generalizable Model-based Neural Radiance Fields to synthesize free-viewpoint images.
Specifically, we propose a geometry-guided attention mechanism to register the appearance code from multi-view 2D images to a geometry proxy.
arXiv Detail & Related papers (2023-03-24T03:32:02Z) - Physics-based Indirect Illumination for Inverse Rendering [70.27534648770057]
We present a physics-based inverse rendering method that learns the illumination, geometry, and materials of a scene from posed multi-view RGB images.
As a side product, our physics-based inverse rendering model also facilitates flexible and realistic material editing as well as relighting.
arXiv Detail & Related papers (2022-12-09T07:33:49Z) - PVSeRF: Joint Pixel-, Voxel- and Surface-Aligned Radiance Field for
Single-Image Novel View Synthesis [52.546998369121354]
We present PVSeRF, a learning framework that reconstructs neural radiance fields from single-view RGB images.
We propose to incorporate explicit geometry reasoning and combine it with pixel-aligned features for radiance field prediction.
We show that the introduction of such geometry-aware features helps to achieve a better disentanglement between appearance and geometry.
arXiv Detail & Related papers (2022-02-10T07:39:47Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.