論文の概要: A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts
- arxiv url: http://arxiv.org/abs/2303.15361v1
- Date: Mon, 27 Mar 2023 16:32:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-28 14:27:43.525483
- Title: A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts
- Title(参考訳): 分布シフト下におけるテスト時間適応に関する包括的調査
- Authors: Jian Liang and Ran He and Tieniu Tan
- Abstract要約: 新たなパラダイムであるテスト時適応は、事前トレーニングされたモデルをテスト中にラベルのないデータに適用し、予測を行う可能性がある。
このパラダイムの最近の進歩は、推論に先立って自己適応モデルのトレーニングにラベルのないデータを活用するという大きな利点を浮き彫りにしている。
- 参考スコア(独自算出の注目度): 143.14128737978342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning methods strive to acquire a robust model during training
that can generalize well to test samples, even under distribution shifts.
However, these methods often suffer from a performance drop due to unknown test
distributions. Test-time adaptation (TTA), an emerging paradigm, has the
potential to adapt a pre-trained model to unlabeled data during testing, before
making predictions. Recent progress in this paradigm highlights the significant
benefits of utilizing unlabeled data for training self-adapted models prior to
inference. In this survey, we divide TTA into several distinct categories,
namely, test-time (source-free) domain adaptation, test-time batch adaptation,
online test-time adaptation, and test-time prior adaptation. For each category,
we provide a comprehensive taxonomy of advanced algorithms, followed by a
discussion of different learning scenarios. Furthermore, we analyze relevant
applications of TTA and discuss open challenges and promising areas for future
research. A comprehensive list of TTA methods can be found at
\url{https://github.com/tim-learn/awesome-test-time-adaptation}.
- Abstract(参考訳): 機械学習の手法はトレーニング中にロバストなモデルを獲得し、分散シフト下でもサンプルのテストにうまく一般化することを目指している。
しかし、これらの方法はしばしば未知のテスト分布のために性能低下に苦しむ。
新たなパラダイムであるテスト時間適応(tta)は、事前にトレーニングしたモデルをテスト中にラベルなしのデータに適応する可能性を持っている。
このパラダイムの最近の進歩は、推論に先立って自己適応モデルのトレーニングにラベルのないデータを活用するという大きな利点を強調している。
本研究では,TTAをテストタイム(ソースフリー)ドメイン適応,テストタイムバッチ適応,オンラインテストタイム適応,テストタイム事前適応という,いくつかの異なるカテゴリに分けた。
各カテゴリについて、高度なアルゴリズムの包括的分類法を提供し、続いてさまざまな学習シナリオについて論じる。
さらに、TTAの関連応用を分析し、今後の研究に期待できる課題と領域について論じる。
TTAメソッドの包括的なリストは、 \url{https://github.com/tim-learn/awesome-test-time-adaptation} にある。
関連論文リスト
- Beyond Model Adaptation at Test Time: A Survey [43.03129492126422]
機械学習アルゴリズムは、テストディストリビューションのサンプルがトレーニング中に観察されるものから逸脱し始めたときに苦労する。
テスト時間適応は、ソースデータのみに基づくトレーニングモデルによるドメイン適応とドメイン一般化の利点を組み合わせる。
テスト時間適応に関する総合的かつ体系的なレビューを行い、400以上の最近の論文を取り上げている。
論文 参考訳(メタデータ) (2024-11-06T06:13:57Z) - DOTA: Distributional Test-Time Adaptation of Vision-Language Models [52.98590762456236]
トレーニングフリーテスト時動的アダプタ(TDA)は、この問題に対処するための有望なアプローチである。
単体テスト時間適応法(Dota)の簡易かつ効果的な方法を提案する。
Dotaは継続的にテストサンプルの分布を推定し、モデルがデプロイメント環境に継続的に適応できるようにします。
論文 参考訳(メタデータ) (2024-09-28T15:03:28Z) - Test-Time Adaptation with Perturbation Consistency Learning [32.58879780726279]
そこで本研究では, 分布変化のあるサンプルに対して, 安定な予測を行うための簡易なテスト時間適応手法を提案する。
提案手法は,強力なPLMバックボーンよりも推論時間が少なく,高い,あるいは同等の性能を実現することができる。
論文 参考訳(メタデータ) (2023-04-25T12:29:22Z) - DELTA: degradation-free fully test-time adaptation [59.74287982885375]
テスト時間バッチ正規化(BN)や自己学習といった,一般的な適応手法では,2つの好ましくない欠陥が隠されていることがわかった。
まず、テスト時間BNにおける正規化統計は、現在受信されているテストサンプルに完全に影響され、その結果、不正確な推定結果が得られることを明らかにする。
第二に、テスト時間適応中にパラメータ更新が支配的なクラスに偏っていることを示す。
論文 参考訳(メタデータ) (2023-01-30T15:54:00Z) - TeST: Test-time Self-Training under Distribution Shift [99.68465267994783]
Test-Time Self-Training (TeST)は、あるソースデータとテスト時の新しいデータ分散に基づいてトレーニングされたモデルを入力する技術である。
また,TeSTを用いたモデルでは,ベースラインテスト時間適応アルゴリズムよりも大幅に改善されていることがわかった。
論文 参考訳(メタデータ) (2022-09-23T07:47:33Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
テスト時間適応(TTA)は、テスト時にラベルのないデータにモデルを適応させることによって、この問題に対処することを目的としている。
本稿では,クラス認識特徴アライメント(CAFA, Class-Aware Feature Alignment)と呼ばれる単純な機能アライメント損失を提案する。
論文 参考訳(メタデータ) (2022-06-01T03:02:07Z) - Efficient Test-Time Model Adaptation without Forgetting [60.36499845014649]
テストタイム適応は、トレーニングとテストデータの間の潜在的な分散シフトに取り組むことを目指している。
信頼性および非冗長なサンプルを同定するためのアクティブなサンプル選択基準を提案する。
また、重要なモデルパラメータを劇的な変化から制約するFisher regularizerを導入します。
論文 参考訳(メタデータ) (2022-04-06T06:39:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。