論文の概要: Beyond Accuracy: A Critical Review of Fairness in Machine Learning for
Mobile and Wearable Computing
- arxiv url: http://arxiv.org/abs/2303.15585v1
- Date: Mon, 27 Mar 2023 20:28:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 17:17:34.042701
- Title: Beyond Accuracy: A Critical Review of Fairness in Machine Learning for
Mobile and Wearable Computing
- Title(参考訳): Beyond Accuracy: モバイルおよびウェアラブルコンピューティングにおける機械学習の公正性の批判的レビュー
- Authors: Sofia Yfantidou, Marios Constantinides, Dimitris Spathis, Athena
Vakali, Daniele Quercia, Fahim Kawsar
- Abstract要約: 我々は過去5年間のACM Interactive, Mobile, Wearable and Ubiquitous Technologies(IMWUT)ジャーナルに掲載された論文をレビューする。
論文のごく一部が近代的公正レポートに適合していることが,本研究で確認された。
これらの知見を踏まえ、ユビキタステクノロジーの設計・開発のための実践的ガイドラインを提供する。
- 参考スコア(独自算出の注目度): 10.759145648364376
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of mobile, wearable, and ubiquitous computing (UbiComp) is
undergoing a revolutionary integration of machine learning. Devices can now
diagnose diseases, predict heart irregularities, and unlock the full potential
of human cognition. However, the underlying algorithms are not immune to biases
with respect to sensitive attributes (e.g., gender, race), leading to
discriminatory outcomes. The research communities of HCI and AI-Ethics have
recently started to explore ways of reporting information about datasets to
surface and, eventually, counter those biases. The goal of this work is to
explore the extent to which the UbiComp community has adopted such ways of
reporting and highlight potential shortcomings. Through a systematic review of
papers published in the Proceedings of the ACM Interactive, Mobile, Wearable
and Ubiquitous Technologies (IMWUT) journal over the past 5 years (2018-2022),
we found that progress on algorithmic fairness within the UbiComp community
lags behind. Our findings show that only a small portion (5%) of published
papers adheres to modern fairness reporting, while the overwhelming majority
thereof focuses on accuracy or error metrics. In light of these findings, our
work provides practical guidelines for the design and development of ubiquitous
technologies that not only strive for accuracy but also for fairness.
- Abstract(参考訳): モバイル、ウェアラブル、ユビキタスコンピューティング(UbiComp)の分野では、機械学習の革命的な統合が進行中である。
デバイスは病気を診断し、心臓の異常を予測し、人間の認知の可能性を解き放つことができる。
しかし、基礎となるアルゴリズムは、敏感な属性(例えば、性別、人種)に対するバイアスに免疫がなく、差別的な結果をもたらす。
HCIとAI-Ethicsの研究コミュニティは最近、データセットに関する情報を表面化し、最終的にはバイアスに対処する方法を探り始めた。
この研究の目的は、UbiCompコミュニティがこのような報告方法を採用し、潜在的な欠点を浮き彫りにすることである。
The Proceedings of ACM Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT) Journal(2018-2022)に掲載された論文を体系的にレビューした結果,UbiCompコミュニティにおけるアルゴリズムフェアネスの進展が遅れていることが判明した。
論文のごく一部(5%)が現代のフェアネスレポートに準拠しているのに対し,圧倒的多数は精度や誤差の指標に重点を置いている。
これらの知見を踏まえて,本研究は,正確性だけでなく公正性も追求するユビキタス技術の設計・開発のための実践的ガイドラインを提供する。
関連論文リスト
- Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - Android Malware Detection with Unbiased Confidence Guarantees [1.6432632226868131]
本稿では,マルウェア検出毎に確実な信頼性を保証する機械学習動的解析手法を提案する。
提案手法は、Conformal Predictionと呼ばれる新しい機械学習フレームワークと、ランダムな森林分類器を組み合わせたものである。
実際のアンドロイドデバイスに1866の悪意のある4816の良質なアプリケーションをインストールすることで,大規模なデータセット上での性能を検証した。
論文 参考訳(メタデータ) (2023-12-17T11:07:31Z) - Active Inference on the Edge: A Design Study [5.815300670677979]
アクティブ推論(アクティブ推論、英: Active Inference、ACI)とは、脳が知覚情報を常に予測し評価し、長期的サプライズを減らす方法を記述する神経科学の概念である。
我々は,ACIエージェントが要求を満たすことなく,最適化問題を迅速かつ追跡的に解決できたことを示す。
論文 参考訳(メタデータ) (2023-11-17T16:03:04Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Fairness meets Cross-Domain Learning: a new perspective on Models and
Metrics [80.07271410743806]
クロスドメイン学習(CD)とモデルフェアネスの関係について検討する。
いくつかの人口集団にまたがる顔画像と医療画像のベンチマークと、分類とローカライゼーションタスクについて紹介する。
本研究は,3つの最先端フェアネスアルゴリズムとともに,14のCDアプローチをカバーし,前者が後者に勝ることを示す。
論文 参考訳(メタデータ) (2023-03-25T09:34:05Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - A Comprehensive Review of Trends, Applications and Challenges In
Out-of-Distribution Detection [0.76146285961466]
アウト・オブ・ディストリビューション・データ・サブセットの検出とより包括的な一般化の実現に焦点をあてた研究分野が誕生した。
多くのディープラーニングベースのモデルは、ベンチマークデータセットでほぼ完璧な結果を得たため、これらのモデルの信頼性と信頼性を評価する必要性は、これまで以上に強く感じられる。
本稿では,本分野における70以上の論文のレビューに加えて,今後の研究の課題と方向性を提示するとともに,データシフトの多種多様さを統一的に把握し,より一般化するためのソリューションを提案する。
論文 参考訳(メタデータ) (2022-09-26T18:13:14Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - DAPPER: Label-Free Performance Estimation after Personalization for
Heterogeneous Mobile Sensing [95.18236298557721]
DAPPER(Domain AdaPtation Performance EstimatoR)を提案する。
実世界の6つのベースラインと比較した4つのセンシングデータセットによる評価の結果,DAPPERの精度は39.8%向上した。
論文 参考訳(メタデータ) (2021-11-22T08:49:33Z) - Improving Fairness of AI Systems with Lossless De-biasing [15.039284892391565]
AIシステムのバイアスを緩和して全体的な公正性を高めることが重要な課題となっている。
我々は,不利益グループにおけるデータの不足を対象とする情報損失のない脱バイアス手法を提案する。
論文 参考訳(メタデータ) (2021-05-10T17:38:38Z) - Fair Representation Learning for Heterogeneous Information Networks [35.80367469624887]
公平なHIN表現学習のための包括的非バイアス化手法を提案する。
これらのアルゴリズムの挙動,特にフェアネスと予測精度のトレードオフをバランスさせる能力について検討した。
キャリアカウンセリングの自動化アプリケーションにおいて,提案手法の性能を評価する。
論文 参考訳(メタデータ) (2021-04-18T08:28:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。