論文の概要: Cross-View Visual Geo-Localization for Outdoor Augmented Reality
- arxiv url: http://arxiv.org/abs/2303.15676v1
- Date: Tue, 28 Mar 2023 01:58:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 16:51:09.498895
- Title: Cross-View Visual Geo-Localization for Outdoor Augmented Reality
- Title(参考訳): 屋外拡張現実のためのクロスビュービジュアルジオローカライズ
- Authors: Niluthpol Chowdhury Mithun, Kshitij Minhas, Han-Pang Chiu, Taragay
Oskiper, Mikhail Sizintsev, Supun Samarasekera, Rakesh Kumar
- Abstract要約: 地上画像のクロスビューマッチングによる測地位置推定の課題をジオレファレンス衛星画像データベースに解決する。
本稿では,新しいトランスフォーマーニューラルネットワークモデルを提案する。
いくつかのベンチマーク・クロスビュー・ジオローカライズ・データセットの実験により、我々のモデルが最先端の性能を達成することを示す。
- 参考スコア(独自算出の注目度): 11.214903134756888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precise estimation of global orientation and location is critical to ensure a
compelling outdoor Augmented Reality (AR) experience. We address the problem of
geo-pose estimation by cross-view matching of query ground images to a
geo-referenced aerial satellite image database. Recently, neural network-based
methods have shown state-of-the-art performance in cross-view matching.
However, most of the prior works focus only on location estimation, ignoring
orientation, which cannot meet the requirements in outdoor AR applications. We
propose a new transformer neural network-based model and a modified triplet
ranking loss for joint location and orientation estimation. Experiments on
several benchmark cross-view geo-localization datasets show that our model
achieves state-of-the-art performance. Furthermore, we present an approach to
extend the single image query-based geo-localization approach by utilizing
temporal information from a navigation pipeline for robust continuous
geo-localization. Experimentation on several large-scale real-world video
sequences demonstrates that our approach enables high-precision and stable AR
insertion.
- Abstract(参考訳): アウトドア拡張現実(ar)体験を確実にするためには、グローバルオリエンテーションとロケーションの正確な推定が不可欠である。
地上画像のクロスビューマッチングによる測地位置推定の課題をジオレファレンス衛星画像データベースに解決する。
近年,ニューラルネットワークに基づく手法がクロスビューマッチングにおいて最先端のパフォーマンスを示している。
しかし、以前の作業のほとんどは位置推定にのみ焦点を合わせ、方向を無視し、屋外arアプリケーションでは要件を満たせない。
本稿では,新しいトランスフォーマリン・ニューラル・ネットワークに基づくモデルと,位置推定と方向推定のための修正三重項ランキングロスを提案する。
いくつかのベンチマーククロスビュージオローカライズデータセットにおける実験は、このモデルが最先端のパフォーマンスを達成していることを示している。
さらに,ロバストな連続的ジオローカライズのためにナビゲーションパイプラインからの時間情報を活用することにより,単一の画像クエリに基づくジオローカライズ手法を拡張する手法を提案する。
大規模実世界の複数の映像を実験した結果,本手法は高精度で安定したar挿入が可能となった。
関連論文リスト
- Swarm Intelligence in Geo-Localization: A Multi-Agent Large Vision-Language Model Collaborative Framework [51.26566634946208]
smileGeoは、新しい視覚的ジオローカライゼーションフレームワークである。
エージェント間のコミュニケーションによって、SmithGeoはこれらのエージェントの固有の知識と、検索された情報を統合する。
その結果,本手法は現在の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2024-08-21T03:31:30Z) - ConGeo: Robust Cross-view Geo-localization across Ground View Variations [34.192775134189965]
クロスビューなジオローカライゼーションは,地上レベルのクエリイメージを対応するジオレファレンスな空中ビューとマッチングすることで,ローカライズすることを目的としている。
既存の学習パイプラインはオリエンテーションに特化しているか、FoVに特化している。
本研究では,地形定位のためのコントラスト法であるConGeoを提案する。
論文 参考訳(メタデータ) (2024-03-20T20:37:13Z) - CurriculumLoc: Enhancing Cross-Domain Geolocalization through
Multi-Stage Refinement [11.108860387261508]
ビジュアルジオローカライゼーションはコスト効率が高くスケーラブルなタスクであり、未知の場所で撮影された1つ以上のクエリイメージとジオタグ付き参照イメージのセットをマッチングする。
我々は,グローバルな意味認識と局所的幾何学的検証を備えたキーポイント検出と記述法であるCurriculumLocを開発した。
我々は、ALTOで62.6%と94.5%の新しいハイリコール@1スコアをそれぞれ2つの異なる距離で達成した。
論文 参考訳(メタデータ) (2023-11-20T08:40:01Z) - GeoCLIP: Clip-Inspired Alignment between Locations and Images for
Effective Worldwide Geo-localization [61.10806364001535]
世界規模のジオローカライゼーションは、地球上のどこでも撮影された画像の正確な位置を特定することを目的としている。
既存のアプローチは、地球を離散的な地理的細胞に分割し、問題を分類タスクに変換する。
画像と対応するGPS位置のアライメントを強制する新しいCLIPにインスパイアされた画像-GPS検索手法であるGeoCLIPを提案する。
論文 参考訳(メタデータ) (2023-09-27T20:54:56Z) - View Consistent Purification for Accurate Cross-View Localization [59.48131378244399]
本稿では,屋外ロボットのための微細な自己局在化手法を提案する。
提案手法は,既存のクロスビューローカライゼーション手法の限界に対処する。
これは、動的環境における知覚を増強する初めての疎視のみの手法である。
論文 参考訳(メタデータ) (2023-08-16T02:51:52Z) - Cross-View Image Sequence Geo-localization [6.555961698070275]
クロスビュージオローカライゼーションは,クエリ基底画像のGPS位置を推定することを目的としている。
最近のアプローチでは、パノラマ画像を用いて視界範囲を拡大している。
本研究では、フィールド-オフ-ビューの限られた画像のシーケンスで動作する、最初のクロスビューなジオローカライズ手法を提案する。
論文 参考訳(メタデータ) (2022-10-25T19:46:18Z) - Beyond Cross-view Image Retrieval: Highly Accurate Vehicle Localization
Using Satellite Image [91.29546868637911]
本稿では,地上画像と架空衛星地図とをマッチングすることにより,車載カメラのローカライゼーションの問題に対処する。
鍵となる考え方は、タスクをポーズ推定として定式化し、ニューラルネットベースの最適化によってそれを解くことである。
標準自動運転車のローカライゼーションデータセットの実験により,提案手法の優位性が確認された。
論文 参考訳(メタデータ) (2022-04-10T19:16:58Z) - Accurate 3-DoF Camera Geo-Localization via Ground-to-Satellite Image
Matching [102.39635336450262]
地上で取得したクエリ画像とジオタグ付き衛星画像の大規模データベースとをマッチングすることにより、地上から衛星画像のジオローカライズの問題に対処する。
我々の新しい手法は、衛星画像のピクセルサイズの精度まで、クエリー画像のきめ細かい位置を達成できる。
論文 参考訳(メタデータ) (2022-03-26T20:10:38Z) - Continuous Self-Localization on Aerial Images Using Visual and Lidar
Sensors [25.87104194833264]
本研究では,車両のセンサ情報を未確認対象領域の航空画像に登録することにより,屋外環境におけるジオトラッキング手法を提案する。
我々は、地上および空中画像から視覚的特徴を抽出するために、計量学習環境でモデルを訓練する。
本手法は,視認不可能な正光の自己局在化のために,エンド・ツー・エンドの微分可能なモデルでオンボードカメラを利用する最初の方法である。
論文 参考訳(メタデータ) (2022-03-07T12:25:44Z) - Where am I looking at? Joint Location and Orientation Estimation by
Cross-View Matching [95.64702426906466]
ジオタグ付き空中画像の大規模データベースを考えると、クロスビューなジオローカライゼーションは問題となる。
地上画像と空中画像の向きを知ることは、これらの2つのビュー間のあいまいさを著しく軽減することができる。
局所化時の横方向のアライメントを推定する動的類似マッチングネットワークを設計する。
論文 参考訳(メタデータ) (2020-05-08T05:21:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。