Neuro-symbolic Rule Learning in Real-world Classification Tasks
- URL: http://arxiv.org/abs/2303.16674v1
- Date: Wed, 29 Mar 2023 13:27:14 GMT
- Title: Neuro-symbolic Rule Learning in Real-world Classification Tasks
- Authors: Kexin Gu Baugh, Nuri Cingillioglu, Alessandra Russo
- Abstract summary: We extend pix2rule's neural DNF module to support rule learning in real-world multi-class and multi-label classification tasks.
We propose a novel extended model called neural DNF-EO (Exactly One) which enforces mutual exclusivity in multi-class classification.
- Score: 75.0907310059298
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neuro-symbolic rule learning has attracted lots of attention as it offers
better interpretability than pure neural models and scales better than symbolic
rule learning. A recent approach named pix2rule proposes a neural Disjunctive
Normal Form (neural DNF) module to learn symbolic rules with feed-forward
layers. Although proved to be effective in synthetic binary classification,
pix2rule has not been applied to more challenging tasks such as multi-label and
multi-class classifications over real-world data. In this paper, we address
this limitation by extending the neural DNF module to (i) support rule learning
in real-world multi-class and multi-label classification tasks, (ii) enforce
the symbolic property of mutual exclusivity (i.e. predicting exactly one class)
in multi-class classification, and (iii) explore its scalability over large
inputs and outputs. We train a vanilla neural DNF model similar to pix2rule's
neural DNF module for multi-label classification, and we propose a novel
extended model called neural DNF-EO (Exactly One) which enforces mutual
exclusivity in multi-class classification. We evaluate the classification
performance, scalability and interpretability of our neural DNF-based models,
and compare them against pure neural models and a state-of-the-art symbolic
rule learner named FastLAS. We demonstrate that our neural DNF-based models
perform similarly to neural networks, but provide better interpretability by
enabling the extraction of logical rules. Our models also scale well when the
rule search space grows in size, in contrast to FastLAS, which fails to learn
in multi-class classification tasks with 200 classes and in all multi-label
settings.
Related papers
- CoLaNET -- A Spiking Neural Network with Columnar Layered Architecture for Classification [0.0]
I describe a spiking neural network (SNN) architecture which, can be used in wide range of supervised learning classification tasks.
It is assumed, that all participating signals (the classified object description, correct class label and SNN decision) have spiking nature.
I illustrate the high performance of my network on a task related to model-based reinforcement learning.
arXiv Detail & Related papers (2024-09-02T13:04:54Z) - Neural Symbolic Logical Rule Learner for Interpretable Learning [1.9526476410335776]
Rule-based neural networks stand out for enabling interpretable classification by learning logical rules for both prediction and interpretation.
We introduce the Normal Form Rule Learner (NFRL) algorithm, leveraging a selective discrete neural network, to learn rules in both Conjunctive Normal Form (CNF) and Disjunctive Normal Form (DNF)
Through extensive experiments on 11 datasets, NFRL demonstrates superior classification performance, quality of learned rules, efficiency and interpretability compared to 12 state-of-the-art alternatives.
arXiv Detail & Related papers (2024-08-21T18:09:12Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
This paper introduces the SANE approach to weight-space learning.
Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights.
arXiv Detail & Related papers (2024-06-14T13:12:07Z) - Rule Based Learning with Dynamic (Graph) Neural Networks [0.8158530638728501]
We present rule based graph neural networks (RuleGNNs) that overcome some limitations of ordinary graph neural networks.
Our experiments show that the predictive performance of RuleGNNs is comparable to state-of-the-art graph classifiers.
We introduce new synthetic benchmark graph datasets to show how to integrate expert knowledge into RuleGNNs.
arXiv Detail & Related papers (2024-06-14T12:01:18Z) - Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
We introduce and evaluate a brain-like neural network model capable of unsupervised representation learning.
The model was tested on a diverse set of popular machine learning benchmarks.
arXiv Detail & Related papers (2024-06-07T08:32:30Z) - Deep Dependency Networks for Multi-Label Classification [24.24496964886951]
We show that the performance of previous approaches that combine Markov Random Fields with neural networks can be modestly improved.
We propose a new modeling framework called deep dependency networks, which augments a dependency network.
Despite its simplicity, jointly learning this new architecture yields significant improvements in performance.
arXiv Detail & Related papers (2023-02-01T17:52:40Z) - Neural Dependencies Emerging from Learning Massive Categories [94.77992221690742]
This work presents two astonishing findings on neural networks learned for large-scale image classification.
1) Given a well-trained model, the logits predicted for some category can be directly obtained by linearly combining the predictions of a few other categories.
2) Neural dependencies exist not only within a single model, but even between two independently learned models.
arXiv Detail & Related papers (2022-11-21T09:42:15Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - pix2rule: End-to-end Neuro-symbolic Rule Learning [84.76439511271711]
This paper presents a complete neuro-symbolic method for processing images into objects, learning relations and logical rules.
The main contribution is a differentiable layer in a deep learning architecture from which symbolic relations and rules can be extracted.
We demonstrate that our model scales beyond state-of-the-art symbolic learners and outperforms deep relational neural network architectures.
arXiv Detail & Related papers (2021-06-14T15:19:06Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.