TraVaG: Differentially Private Trace Variant Generation Using GANs
- URL: http://arxiv.org/abs/2303.16704v1
- Date: Wed, 29 Mar 2023 13:54:32 GMT
- Title: TraVaG: Differentially Private Trace Variant Generation Using GANs
- Authors: Majid Rafiei, Frederik Wangelik, Mahsa Pourbafrani, Wil M.P. van der
Aalst
- Abstract summary: TraVaG is a new approach for releasing differentially private trace variants based on textGenerative Adversarial Networks (GANs)
TraVaG overcomes shortcomings of conventional privacy preservation techniques such as bounding the length of variants and introducing fake variants.
- Score: 0.4014524824655105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Process mining is rapidly growing in the industry. Consequently, privacy
concerns regarding sensitive and private information included in event data,
used by process mining algorithms, are becoming increasingly relevant.
State-of-the-art research mainly focuses on providing privacy guarantees, e.g.,
differential privacy, for trace variants that are used by the main process
mining techniques, e.g., process discovery. However, privacy preservation
techniques for releasing trace variants still do not fulfill all the
requirements of industry-scale usage. Moreover, providing privacy guarantees
when there exists a high rate of infrequent trace variants is still a
challenge. In this paper, we introduce TraVaG as a new approach for releasing
differentially private trace variants based on \text{Generative Adversarial
Networks} (GANs) that provides industry-scale benefits and enhances the level
of privacy guarantees when there exists a high ratio of infrequent variants.
Moreover, TraVaG overcomes shortcomings of conventional privacy preservation
techniques such as bounding the length of variants and introducing fake
variants. Experimental results on real-life event data show that our approach
outperforms state-of-the-art techniques in terms of privacy guarantees, plain
data utility preservation, and result utility preservation.
Related papers
- Releasing Differentially Private Event Logs Using Generative Models [0.13124513975412253]
We introduce two novel approaches for releasing private trace variants based on trained generative models.
Our approaches surpass state-of-the-art techniques in terms of privacy guarantees and utility preservation.
arXiv Detail & Related papers (2025-04-08T20:35:53Z) - Differentially Private Random Feature Model [52.468511541184895]
We produce a differentially private random feature model for privacy-preserving kernel machines.
We show that our method preserves privacy and derive a generalization error bound for the method.
arXiv Detail & Related papers (2024-12-06T05:31:08Z) - Masked Differential Privacy [64.32494202656801]
We propose an effective approach called masked differential privacy (DP), which allows for controlling sensitive regions where differential privacy is applied.
Our method operates selectively on data and allows for defining non-sensitive-temporal regions without DP application or combining differential privacy with other privacy techniques within data samples.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - Synthetic Data: Revisiting the Privacy-Utility Trade-off [4.832355454351479]
An article stated that synthetic data does not provide a better trade-off between privacy and utility than traditional anonymization techniques.
The article also claims to have identified a breach in the differential privacy guarantees provided by PATEGAN and PrivBayes.
We analyzed the implementation of the privacy game described in the article and found that it operated in a highly specialized and constrained environment.
arXiv Detail & Related papers (2024-07-09T14:48:43Z) - Provable Privacy with Non-Private Pre-Processing [56.770023668379615]
We propose a general framework to evaluate the additional privacy cost incurred by non-private data-dependent pre-processing algorithms.
Our framework establishes upper bounds on the overall privacy guarantees by utilising two new technical notions.
arXiv Detail & Related papers (2024-03-19T17:54:49Z) - Preserving Node-level Privacy in Graph Neural Networks [8.823710998526705]
We propose a solution that addresses the issue of node-level privacy in Graph Neural Networks (GNNs)
Our protocol consists of two main components: 1) a sampling routine called HeterPoisson, which employs a specialized node sampling strategy and a series of tailored operations to generate a batch of sub-graphs with desired properties, and 2) a randomization routine that utilizes symmetric Laplace noise instead of the commonly used Gaussian noise.
Our protocol enables GNN learning with good performance, as demonstrated by experiments on five real-world datasets.
arXiv Detail & Related papers (2023-11-12T16:21:29Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
We propose a new differential privacy paradigm called estimate-verify-release (EVR)
EVR paradigm first estimates the privacy parameter of a mechanism, then verifies whether it meets this guarantee, and finally releases the query output.
Our empirical evaluation shows the newly proposed EVR paradigm improves the utility-privacy tradeoff for privacy-preserving machine learning.
arXiv Detail & Related papers (2023-04-17T00:38:01Z) - Differentially-Private Data Synthetisation for Efficient Re-Identification Risk Control [3.8811062755861956]
$epsilon$-PrivateSMOTE is a technique for safeguarding against re-identification and linkage attacks.
Our proposal combines synthetic data generation via noise-induced adversarial with differential privacy principles to obfuscate high-risk cases.
arXiv Detail & Related papers (2022-12-01T13:20:37Z) - Private Set Generation with Discriminative Information [63.851085173614]
Differentially private data generation is a promising solution to the data privacy challenge.
Existing private generative models are struggling with the utility of synthetic samples.
We introduce a simple yet effective method that greatly improves the sample utility of state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-07T10:02:55Z) - Distribution-Invariant Differential Privacy [4.700764053354502]
We develop a distribution-invariant privatization (DIP) method to reconcile high statistical accuracy and strict differential privacy.
Under the same strictness of privacy protection, DIP achieves superior statistical accuracy in two simulations and on three real-world benchmarks.
arXiv Detail & Related papers (2021-11-08T22:26:50Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
We design privacy preserving exploration policies for episodic reinforcement learning (RL)
We first provide a meaningful privacy formulation using the notion of joint differential privacy (JDP)
We then develop a private optimism-based learning algorithm that simultaneously achieves strong PAC and regret bounds, and enjoys a JDP guarantee.
arXiv Detail & Related papers (2020-09-18T20:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.