論文の概要: Improving Code Generation by Training with Natural Language Feedback
- arxiv url: http://arxiv.org/abs/2303.16749v2
- Date: Thu, 22 Feb 2024 22:30:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-26 18:36:29.452875
- Title: Improving Code Generation by Training with Natural Language Feedback
- Title(参考訳): 自然言語フィードバックによるトレーニングによるコード生成の改善
- Authors: Angelica Chen, J\'er\'emy Scheurer, Tomasz Korbak, Jon Ander Campos,
Jun Shern Chan, Samuel R. Bowman, Kyunghyun Cho, Ethan Perez
- Abstract要約: 自然言語フィードバックから学習するアルゴリズムを訓練時に形式化し、それをILF(Language Feedback)と呼ぶ。
ILFはトレーニング中に少量の人間によるフィードバックしか必要とせず、テスト時に同じフィードバックを必要としないため、ユーザフレンドリでサンプル効率がよい。
Instly Basic Python Problems (MBPP)ベンチマークでは、ICFを使用してCodegen-Mono 6.1Bモデルのpass@1レートを38%改善しています。
- 参考スコア(独自算出の注目度): 69.52985513422381
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The potential for pre-trained large language models (LLMs) to use natural
language feedback at inference time has been an exciting recent development. We
build upon this observation by formalizing an algorithm for learning from
natural language feedback at training time instead, which we call Imitation
learning from Language Feedback (ILF). ILF requires only a small amount of
human-written feedback during training and does not require the same feedback
at test time, making it both user-friendly and sample-efficient. We further
show that ILF can be seen as a form of minimizing the KL divergence to the
ground truth distribution and demonstrate a proof-of-concept on a neural
program synthesis task. We use ILF to improve a Codegen-Mono 6.1B model's
pass@1 rate by 38% relative (and 10% absolute) on the Mostly Basic Python
Problems (MBPP) benchmark, outperforming both fine-tuning on MBPP and
fine-tuning on repaired programs written by humans. Overall, our results
suggest that learning from human-written natural language feedback is both more
effective and sample-efficient than training exclusively on demonstrations for
improving an LLM's performance on code generation tasks.
- Abstract(参考訳): 推論時に自然言語フィードバックを使用するための事前訓練済みの大規模言語モデル(LLM)の可能性は、最近のエキサイティングな開発である。
我々は、学習時の自然言語フィードバックから学習するためのアルゴリズムを定式化し、これを言語フィードバックから模倣学習(ilf)と呼ぶ。
ILFはトレーニング中に少量の人間によるフィードバックしか必要とせず、テスト時に同じフィードバックを必要としないため、ユーザフレンドリでサンプル効率がよい。
さらに、ilfを基底真理分布へのklの発散を最小化し、神経プログラム合成タスクにおける概念実証を実証する形態と捉えることができることを示した。
ilfを使って、ほとんど基本的なpython問題(mbpp)ベンチマークでcodegen-mono 6.1bモデルのpass@1レートを38%(そして10%絶対)向上させ、mbppでの微調整と、人間が書いたプログラムの微調整を両立させました。
総じて,人間による自然言語フィードバックからの学習は,コード生成タスクにおけるllmのパフォーマンス向上のためのデモンストレーションのみを対象とするトレーニングよりも効率的かつサンプル効率が高いことが示唆された。
関連論文リスト
- LLMs are Superior Feedback Providers: Bootstrapping Reasoning for Lie Detection with Self-Generated Feedback [33.14770105185958]
大型言語モデル (LLM) は人間に似た対話やテキストの理解に優れる。
本研究では,自己生成フィードバックを活用し,嘘検出のためのLPM推論能力を向上させるブートストラップフレームワークを提案する。
本稿では,外交ゲームにおける裏切・偽装検出のためのフレームワークの適用について検討し,プロの人間プレイヤーからのフィードバックと比較する。
論文 参考訳(メタデータ) (2024-08-25T18:47:55Z) - Aligning Language Models with Offline Learning from Human Feedback [5.539080592071948]
環境と対話することなく言語モデルを調整するために,人間のフィードバックフレームワークからオフラインで学習する手法を提案する。
具体的には、フィルタリングアライメント(FA)、報酬重み付けレグレッション(RWR)、条件付きアライメント(CA)について検討し、言語モデルを人間の好みに合わせる。
論文 参考訳(メタデータ) (2023-08-23T10:41:07Z) - LeTI: Learning to Generate from Textual Interactions [60.425769582343506]
本稿では,テキストインタラクション(LETI)から学習するLMの可能性を,バイナリラベルによる正当性をチェックするだけでなく,テキストフィードバックを通じて出力中のエラーをピンポイントし,説明する。
私たちの焦点はコード生成タスクであり、そこではモデルが自然言語命令に基づいてコードを生成する。
LETIは、目的のLMを用いて、自然言語命令、LM生成プログラム、テキストフィードバックの結合に基づいて、モデルを反復的に微調整する。
論文 参考訳(メタデータ) (2023-05-17T15:53:31Z) - Training Language Models with Language Feedback at Scale [50.70091340506957]
我々は、より情報的な言語フィードバックを利用する新しいアプローチであるLanguage Feedback (ILF)から学習を導入する。
ILFは3つのステップから成り、まず言語モデルを入力に条件付けし、最初のLM出力を出力し、改善を生成する。
理論的には、ILFは人間からのフィードバックによる強化学習と同様、ベイズ推論とみなすことができる。
論文 参考訳(メタデータ) (2023-03-28T17:04:15Z) - Chain of Hindsight Aligns Language Models with Feedback [62.68665658130472]
我々は,その極性に関係なく,任意の形式のフィードバックから学習し,最適化が容易な新しい手法であるChain of Hindsightを提案する。
我々は、あらゆる種類のフィードバックを文のシーケンスに変換し、それをモデルを微調整するために使用する。
そうすることで、モデルはフィードバックに基づいて出力を生成するように訓練され、負の属性やエラーを特定し修正する。
論文 参考訳(メタデータ) (2023-02-06T10:28:16Z) - Training Language Models with Natural Language Feedback [51.36137482891037]
3段階学習アルゴリズムを用いてモデル出力の言語フィードバックから学習する。
合成実験において、まず言語モデルがフィードバックを正確に組み込んで改良を行うかどうかを評価する。
人間の手書きフィードバックのサンプルは100程度しかなく, 学習アルゴリズムはGPT-3モデルを微調整し, ほぼ人間レベルの要約を行う。
論文 参考訳(メタデータ) (2022-04-29T15:06:58Z) - Recall and Learn: Fine-tuning Deep Pretrained Language Models with Less
Forgetting [66.45372974713189]
本稿では,マルチタスク学習の概念を取り入れたリコール・アンド・ラーニング機構を提案し,事前学習タスクと下流タスクを共同で学習する。
実験により,本手法はGLUEベンチマークの最先端性能を実現することが示された。
我々はオープンソースのRecAdamを提供し、提案されたメカニズムをAdamに統合し、NLPコミュニティを施設化する。
論文 参考訳(メタデータ) (2020-04-27T08:59:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。