CheckerPose: Progressive Dense Keypoint Localization for Object Pose
Estimation with Graph Neural Network
- URL: http://arxiv.org/abs/2303.16874v2
- Date: Sun, 13 Aug 2023 20:11:23 GMT
- Title: CheckerPose: Progressive Dense Keypoint Localization for Object Pose
Estimation with Graph Neural Network
- Authors: Ruyi Lian, Haibin Ling
- Abstract summary: Estimating the 6-DoF pose of a rigid object from a single RGB image is a crucial yet challenging task.
Recent studies have shown the great potential of dense correspondence-based solutions.
We propose a novel pose estimation algorithm named CheckerPose, which improves on three main aspects.
- Score: 66.24726878647543
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating the 6-DoF pose of a rigid object from a single RGB image is a
crucial yet challenging task. Recent studies have shown the great potential of
dense correspondence-based solutions, yet improvements are still needed to
reach practical deployment. In this paper, we propose a novel pose estimation
algorithm named CheckerPose, which improves on three main aspects. Firstly,
CheckerPose densely samples 3D keypoints from the surface of the 3D object and
finds their 2D correspondences progressively in the 2D image. Compared to
previous solutions that conduct dense sampling in the image space, our strategy
enables the correspondence searching in a 2D grid (i.e., pixel coordinate).
Secondly, for our 3D-to-2D correspondence, we design a compact binary code
representation for 2D image locations. This representation not only allows for
progressive correspondence refinement but also converts the correspondence
regression to a more efficient classification problem. Thirdly, we adopt a
graph neural network to explicitly model the interactions among the sampled 3D
keypoints, further boosting the reliability and accuracy of the
correspondences. Together, these novel components make CheckerPose a strong
pose estimation algorithm. When evaluated on the popular Linemod, Linemod-O,
and YCB-V object pose estimation benchmarks, CheckerPose clearly boosts the
accuracy of correspondence-based methods and achieves state-of-the-art
performances. Code is available at https://github.com/RuyiLian/CheckerPose.
Related papers
- EP2P-Loc: End-to-End 3D Point to 2D Pixel Localization for Large-Scale
Visual Localization [44.05930316729542]
We propose EP2P-Loc, a novel large-scale visual localization method for 3D point clouds.
To increase the number of inliers, we propose a simple algorithm to remove invisible 3D points in the image.
For the first time in this task, we employ a differentiable for end-to-end training.
arXiv Detail & Related papers (2023-09-14T07:06:36Z) - LFM-3D: Learnable Feature Matching Across Wide Baselines Using 3D
Signals [9.201550006194994]
Learnable matchers often underperform when there exists only small regions of co-visibility between image pairs.
We propose LFM-3D, a Learnable Feature Matching framework that uses models based on graph neural networks.
We show that the resulting improved correspondences lead to much higher relative posing accuracy for in-the-wild image pairs.
arXiv Detail & Related papers (2023-03-22T17:46:27Z) - Neural Correspondence Field for Object Pose Estimation [67.96767010122633]
We propose a method for estimating the 6DoF pose of a rigid object with an available 3D model from a single RGB image.
Unlike classical correspondence-based methods which predict 3D object coordinates at pixels of the input image, the proposed method predicts 3D object coordinates at 3D query points sampled in the camera frustum.
arXiv Detail & Related papers (2022-07-30T01:48:23Z) - CorrI2P: Deep Image-to-Point Cloud Registration via Dense Correspondence [51.91791056908387]
We propose the first feature-based dense correspondence framework for addressing the image-to-point cloud registration problem, dubbed CorrI2P.
Specifically, given a pair of a 2D image before a 3D point cloud, we first transform them into high-dimensional feature space feed the features into a symmetric overlapping region to determine the region where the image point cloud overlap.
arXiv Detail & Related papers (2022-07-12T11:49:31Z) - Coupled Iterative Refinement for 6D Multi-Object Pose Estimation [64.7198752089041]
Given a set of known 3D objects and an RGB or RGB-D input image, we detect and estimate the 6D pose of each object.
Our approach iteratively refines both pose and correspondence in a tightly coupled manner, allowing us to dynamically remove outliers to improve accuracy.
arXiv Detail & Related papers (2022-04-26T18:00:08Z) - Multi-initialization Optimization Network for Accurate 3D Human Pose and
Shape Estimation [75.44912541912252]
We propose a three-stage framework named Multi-Initialization Optimization Network (MION)
In the first stage, we strategically select different coarse 3D reconstruction candidates which are compatible with the 2D keypoints of input sample.
In the second stage, we design a mesh refinement transformer (MRT) to respectively refine each coarse reconstruction result via a self-attention mechanism.
Finally, a Consistency Estimation Network (CEN) is proposed to find the best result from mutiple candidates by evaluating if the visual evidence in RGB image matches a given 3D reconstruction.
arXiv Detail & Related papers (2021-12-24T02:43:58Z) - HOPE-Net: A Graph-based Model for Hand-Object Pose Estimation [7.559220068352681]
We propose a lightweight model called HOPE-Net which jointly estimates hand and object pose in 2D and 3D in real-time.
Our network uses a cascade of two adaptive graph convolutional neural networks, one to estimate 2D coordinates of the hand joints and object corners, followed by another to convert 2D coordinates to 3D.
arXiv Detail & Related papers (2020-03-31T19:01:42Z) - Learning 2D-3D Correspondences To Solve The Blind Perspective-n-Point
Problem [98.92148855291363]
This paper proposes a deep CNN model which simultaneously solves for both 6-DoF absolute camera pose 2D--3D correspondences.
Tests on both real and simulated data have shown that our method substantially outperforms existing approaches.
arXiv Detail & Related papers (2020-03-15T04:17:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.