Many-body localization proximity effect in two-species bosonic Hubbard
model
- URL: http://arxiv.org/abs/2303.16876v1
- Date: Wed, 29 Mar 2023 17:31:22 GMT
- Title: Many-body localization proximity effect in two-species bosonic Hubbard
model
- Authors: Pietro Brighi, Marko Ljubotina, Dmitry A. Abanin and Maksym Serbyn
- Abstract summary: We study a bosonic Hubbard model featuring two particle species representing the bath and the disordered system.
We observe clear signatures of a transition from an MBL proximity effect to a delocalized phase.
In this regime, we characterize particle transport, revealing diffusive behavior of the originally localized bosons.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The many-body localization (MBL) proximity effect is an intriguing phenomenon
where a thermal bath localizes due to the interaction with a disordered system.
The interplay of thermal and non-ergodic behavior in these systems gives rise
to a rich phase diagram, whose exploration is an active field of research. In
this work, we study a bosonic Hubbard model featuring two particle species
representing the bath and the disordered system. Using state of the art
numerical techniques, we investigate the dynamics of the model in different
regimes, based on which we obtain a tentative phase diagram as a function of
coupling strength and bath size. When the bath is composed of a single
particle, we observe clear signatures of a transition from an MBL proximity
effect to a delocalized phase. Increasing the bath size, however, its
thermalizing effect becomes stronger and eventually the whole system
delocalizes in the range of moderate interaction strengths studied. In this
regime, we characterize particle transport, revealing diffusive behavior of the
originally localized bosons.
Related papers
- Stability and decay of subradiant patterns in a quantum gas with photon-mediated interactions [34.82692226532414]
We study subradiance in a Bose-Einstein condensate positioned at the mode crossing of two optical cavities.
metastable density structures that suppress emission into one cavity mode prevent relaxation to the stationary, superradiant grating.
We reproduce these dynamics by a quantum mean field model, suggesting that subradiance shares characteristics with quasi-stationary states predicted in other long-range interacting systems.
arXiv Detail & Related papers (2024-07-12T12:47:07Z) - Role of Bath-Induced Many-Body Interactions in the Dissipative Phases of the Su-Schrieffer-Heeger Model [0.0]
The Su-Schrieffer-Heeger chain is a prototype example of a symmetry-protected topological insulator.
Coupling it non-perturbatively to local thermal environments, either through the intercell or the intracell fermion tunneling elements, modifies the topological window.
We employ the recently developed reaction-coordinate polaron transform (RCPT) method, which allows treating system-bath interactions at arbitrary strengths.
arXiv Detail & Related papers (2024-06-19T23:07:17Z) - Study on many-body phases in Jaynes-Cummings-Hubbard arrays [17.053538029057083]
Disorder in one-dimensional (1D) many-body systems emerges abundant phases such as many-body localization (MBL), and thermalization.
This work systematically reveals abundant many-body phases in the 1D JCH model and clarifies the discrepancies in the thermalization properties of systems with and without disorder.
arXiv Detail & Related papers (2023-08-23T07:52:29Z) - Floquet-heating-induced Bose condensation in a scar-like mode of an open
driven optical-lattice system [62.997667081978825]
We show that the interplay of bath-induced dissipation and controlled Floquet heating can give rise to non-equilibrium Bose condensation.
Our predictions are based on a microscopic model that is solved using kinetic equations of motion derived from Floquet-Born-Markov theory.
arXiv Detail & Related papers (2022-04-14T17:56:03Z) - Heat transport and cooling performance in a nanomechanical system with
local and non local interactions [68.8204255655161]
We study heat transport through a one dimensional time-dependent nanomechanical system.
The system presents different stationary transport regimes depending on the driving frequency, temperature gradients and the degree of locality of the interactions.
arXiv Detail & Related papers (2022-02-21T12:03:54Z) - Exact dynamics of non-additive environments in non-Markovian open
quantum systems [0.0]
We present a numerically-exact and efficient technique for tackling the problem of capturing multi-bath system dynamics.
We test the method by applying it to a simple model system that exhibits non-additive behaviour.
We uncover a new regime where the quantum Zeno effect leads to a fully mixed state of the electronic system.
arXiv Detail & Related papers (2021-09-17T10:08:37Z) - Propagation of Many-body Localization in an Anderson Insulator [0.0]
Many-body localization (MBL) is an example of a dynamical phase of matter that avoids thermalization.
We consider the stability of an Anderson insulator with a finite density of particles interacting with a single mobile impurity.
arXiv Detail & Related papers (2021-09-15T14:40:25Z) - Localisation determines the optimal noise rate for quantum transport [68.8204255655161]
Localisation and the optimal dephasing rate in 1D chains are studied.
A simple power law captures the interplay between size-dependent and size-independent responses.
Relationship continues to apply at intermediate and high temperature but breaks down in the low temperature limit.
arXiv Detail & Related papers (2021-06-23T17:52:16Z) - Signatures of bath-induced quantum avalanches in a many-body--localized
system [47.187609203210705]
Quantum avalanches occur when the system is locally coupled to a small thermal inclusion that acts as a bath.
We realize an interface between a many-body--localized system and a thermal inclusion of variable size, and study its dynamics.
arXiv Detail & Related papers (2020-12-30T18:34:34Z) - Quantum dynamics in low-dimensional topological systems [0.0]
We study the quantum dynamics that take place in low dimensional topological systems, specifically 1D and 2D lattices.
We find that the topological nature of the bath reflects itself in the photon bound states and the effective dipolar interactions between the emitters.
arXiv Detail & Related papers (2020-08-05T10:58:35Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.