InceptionNeXt: When Inception Meets ConvNeXt
- URL: http://arxiv.org/abs/2303.16900v2
- Date: Tue, 31 Dec 2024 07:37:02 GMT
- Title: InceptionNeXt: When Inception Meets ConvNeXt
- Authors: Weihao Yu, Pan Zhou, Shuicheng Yan, Xinchao Wang,
- Abstract summary: We build a series of networks, namely IncepitonNeXt, which not only enjoy high throughputs but also maintain competitive performance.
InceptionNeXt achieves 1.6x higher training throughputs than ConvNeXt-T, as well as attains 0.2% top-1 accuracy improvement on ImageNet-1K.
- Score: 147.50287103414115
- License:
- Abstract: Inspired by the long-range modeling ability of ViTs, large-kernel convolutions are widely studied and adopted recently to enlarge the receptive field and improve model performance, like the remarkable work ConvNeXt which employs 7x7 depthwise convolution. Although such depthwise operator only consumes a few FLOPs, it largely harms the model efficiency on powerful computing devices due to the high memory access costs. For example, ConvNeXt-T has similar FLOPs with ResNet-50 but only achieves ~60% throughputs when trained on A100 GPUs with full precision. Although reducing the kernel size of ConvNeXt can improve speed, it results in significant performance degradation, which poses a challenging problem: How to speed up large-kernel-based CNN models while preserving their performance. To tackle this issue, inspired by Inceptions, we propose to decompose large-kernel depthwise convolution into four parallel branches along channel dimension, i.e., small square kernel, two orthogonal band kernels, and an identity mapping. With this new Inception depthwise convolution, we build a series of networks, namely IncepitonNeXt, which not only enjoy high throughputs but also maintain competitive performance. For instance, InceptionNeXt-T achieves 1.6x higher training throughputs than ConvNeX-T, as well as attains 0.2% top-1 accuracy improvement on ImageNet-1K. We anticipate InceptionNeXt can serve as an economical baseline for future architecture design to reduce carbon footprint. Code is available at https://github.com/sail-sg/inceptionnext.
Related papers
- DSNet: A Novel Way to Use Atrous Convolutions in Semantic Segmentation [8.240211805240023]
We revisit the design of atrous convolutions in modern convolutional neural networks (CNNs)
We propose DSNet, a Dual-Branch CNN architecture, which incorporates atrous convolutions in the shallow layers of the model architecture.
Our models achieve a new state-of-the-art trade-off between accuracy and speed on ADE20K, Cityscapes and BDD datasets.
arXiv Detail & Related papers (2024-06-06T02:51:57Z) - PeLK: Parameter-efficient Large Kernel ConvNets with Peripheral Convolution [35.1473732030645]
Inspired by human vision, we propose a human-like peripheral convolution that efficiently reduces over 90% parameter count of dense grid convolution.
Our peripheral convolution behaves highly similar to human, reducing the complexity of convolution from O(K2) to O(logK) without backfiring performance.
For the first time, we successfully scale up the kernel size of CNNs to an unprecedented 101x101 and demonstrate consistent improvements.
arXiv Detail & Related papers (2024-03-12T12:19:05Z) - Shift-ConvNets: Small Convolutional Kernel with Large Kernel Effects [8.933264104073832]
Small convolutional kernels and convolution operations can achieve the closing effects of large kernel sizes.
We propose a shift-wise operator that ensures the CNNs capture long-range dependencies with the help of the sparse mechanism.
On the ImageNet-1k, our shift-wise enhanced CNN model outperforms the state-of-the-art models.
arXiv Detail & Related papers (2024-01-23T13:13:45Z) - More ConvNets in the 2020s: Scaling up Kernels Beyond 51x51 using
Sparsity [103.62784587778037]
Recently, a couple of advanced convolutional models strike back with large kernels motivated by the local but large attention mechanism.
We propose Sparse Large Kernel Network (SLaK), a pure CNN architecture equipped with 51x51 kernels that can perform on par with or better than state-of-the-art hierarchical Transformers.
arXiv Detail & Related papers (2022-07-07T23:55:52Z) - EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for
Mobile Vision Applications [68.35683849098105]
We introduce split depth-wise transpose attention (SDTA) encoder that splits input tensors into multiple channel groups.
Our EdgeNeXt model with 1.3M parameters achieves 71.2% top-1 accuracy on ImageNet-1K.
Our EdgeNeXt model with 5.6M parameters achieves 79.4% top-1 accuracy on ImageNet-1K.
arXiv Detail & Related papers (2022-06-21T17:59:56Z) - Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs [148.0476219278875]
We revisit large kernel design in modern convolutional neural networks (CNNs)
Inspired by recent advances of vision transformers (ViTs), in this paper, we demonstrate that using a few large convolutional kernels instead of a stack of small kernels could be a more powerful paradigm.
We propose RepLKNet, a pure CNN architecture whose kernel size is as large as 31x31, in contrast to commonly used 3x3.
arXiv Detail & Related papers (2022-03-13T17:22:44Z) - Phantom: A High-Performance Computational Core for Sparse Convolutional
Neural Networks [3.198144010381572]
Sparse convolutional neural networks (CNNs) have gained significant traction over the past few years.
They can drastically decrease the model size and computations, if exploited befittingly, as compared to their dense counterparts.
Recently proposed sparse accelerators like SCNN, Eyeriss v2, and SparTen, actively exploit the two-sided or full sparsity, that is, sparsity in both weights and activations, for performance gains.
These accelerators either have inefficient micro-architecture, which limits their performance, have no support for non-unit stride convolutions and fully-connected layers, or suffer
arXiv Detail & Related papers (2021-11-09T08:43:03Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
Dense optical flow estimation plays a key role in many robotic vision tasks.
Current networks often occupy large number of parameters and require heavy computation costs.
Our proposed FastFlowNet works in the well-known coarse-to-fine manner with following innovations.
arXiv Detail & Related papers (2021-03-08T03:09:37Z) - XSepConv: Extremely Separated Convolution [60.90871656244126]
We propose a novel extremely separated convolutional block (XSepConv)
It fuses spatially separable convolutions into depthwise convolution to reduce both the computational cost and parameter size of large kernels.
XSepConv is designed to be an efficient alternative to vanilla depthwise convolution with large kernel sizes.
arXiv Detail & Related papers (2020-02-27T11:46:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.