Machine Learning for Partial Differential Equations
- URL: http://arxiv.org/abs/2303.17078v1
- Date: Thu, 30 Mar 2023 00:57:59 GMT
- Title: Machine Learning for Partial Differential Equations
- Authors: Steven L. Brunton and J. Nathan Kutz
- Abstract summary: Partial differential equations (PDEs) are among the most universal and parsimonious descriptions of natural physical laws.
This review will examine several promising avenues of PDE research that are being advanced by machine learning.
- Score: 5.90315016882222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Partial differential equations (PDEs) are among the most universal and
parsimonious descriptions of natural physical laws, capturing a rich variety of
phenomenology and multi-scale physics in a compact and symbolic representation.
This review will examine several promising avenues of PDE research that are
being advanced by machine learning, including: 1) the discovery of new
governing PDEs and coarse-grained approximations for complex natural and
engineered systems, 2) learning effective coordinate systems and reduced-order
models to make PDEs more amenable to analysis, and 3) representing solution
operators and improving traditional numerical algorithms. In each of these
fields, we summarize key advances, ongoing challenges, and opportunities for
further development.
Related papers
- High precision PINNs in unbounded domains: application to singularity formulation in PDEs [83.50980325611066]
We study the choices of neural network ansatz, sampling strategy, and optimization algorithm.<n>For 1D Burgers equation, our framework can lead to a solution with very high precision.<n>For the 2D Boussinesq equation, we obtain a solution whose loss is $4$ digits smaller than that obtained in citewang2023asymptotic with fewer training steps.
arXiv Detail & Related papers (2025-06-24T02:01:44Z) - Mechanistic PDE Networks for Discovery of Governing Equations [52.492158106791365]
We present Mechanistic PDE Networks, a model for discovery of partial differential equations from data.
The represented PDEs are then solved and decoded for specific tasks.
We develop a native, GPU-capable, parallel, sparse, and differentiable multigrid solver specialized for linear partial differential equations.
arXiv Detail & Related papers (2025-02-25T17:21:44Z) - Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
Physics-informed neural networks (PINNs) have made significant strides in modeling dynamical systems governed by partial differential equations (PDEs)
We propose PIDO, a novel physics-informed neural PDE solver designed to generalize effectively across diverse PDE configurations.
We validate PIDO on a range of benchmarks, including 1D combined equations and 2D Navier-Stokes equations.
arXiv Detail & Related papers (2024-11-28T13:16:20Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
We present the Universal PDE solver (Unisolver) capable of solving a wide scope of PDEs.
Our key finding is that a PDE solution is fundamentally under the control of a series of PDE components.
Unisolver achieves consistent state-of-the-art results on three challenging large-scale benchmarks.
arXiv Detail & Related papers (2024-05-27T15:34:35Z) - Pretraining Codomain Attention Neural Operators for Solving Multiphysics PDEs [85.40198664108624]
We propose Codomain Attention Neural Operator (CoDA-NO) to solve multiphysics problems with PDEs.
CoDA-NO tokenizes functions along the codomain or channel space, enabling self-supervised learning or pretraining of multiple PDE systems.
We find CoDA-NO to outperform existing methods by over 36% on complex downstream tasks with limited data.
arXiv Detail & Related papers (2024-03-19T08:56:20Z) - Finite Element Operator Network for Solving Parametric PDEs [10.855582917943092]
Partial differential equations (PDEs) underlie our understanding and prediction of natural phenomena.
We propose a novel approach for solving parametric PDEs using a Finite Element Operator Network (FEONet)
arXiv Detail & Related papers (2023-08-09T03:56:07Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and material models.
We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned.
We introduce a new framework termed "Neural Constitutive Laws" (NCLaw) which utilizes a network architecture that strictly guarantees standard priors.
arXiv Detail & Related papers (2023-04-27T17:42:24Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs.
Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space.
LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks.
arXiv Detail & Related papers (2023-01-30T04:58:40Z) - KoopmanLab: machine learning for solving complex physics equations [7.815723299913228]
We present KoopmanLab, an efficient module of the Koopman neural operator family, for learning PDEs without analytic solutions or closed forms.
Our module consists of multiple variants of the Koopman neural operator (KNO), a kind of mesh-independent neural-network-based PDE solvers.
The compact variants of KNO can accurately solve PDEs with small model sizes while the large variants of KNO are more competitive in predicting highly complicated dynamic systems.
arXiv Detail & Related papers (2023-01-03T13:58:39Z) - Partial Differential Equations Meet Deep Neural Networks: A Survey [10.817323756266527]
Problems in science and engineering can be represented by a set of partial differential equations (PDEs) through mathematical modeling.
Mechanism-based computation following PDEs has long been an essential paradigm for studying topics such as computational fluid dynamics.
Deep Neural Networks (DNNs) for PDEs have emerged as an effective means of solving PDEs.
arXiv Detail & Related papers (2022-10-27T07:01:56Z) - Multi-scale Physical Representations for Approximating PDE Solutions
with Graph Neural Operators [14.466945570499183]
We study three multi-resolution schema with integral kernel operators approximated with emphMessage Passing Graph Neural Networks (MPGNNs)
To validate our study, we make extensive MPGNNs experiments with well-chosen metrics considering steady and unsteady PDEs.
arXiv Detail & Related papers (2022-06-29T14:42:03Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Physics-informed learning of governing equations from scarce data [14.95055620484844]
This work introduces a physics-informed deep learning framework to discover governing partial differential equations (PDEs) from scarce and noisy representation data.
The efficacy and robustness of this method are demonstrated, both numerically and experimentally, on discovering a variety of PDE systems.
The resulting computational framework shows the potential for closed-form model discovery in practical applications.
arXiv Detail & Related papers (2020-05-05T22:13:22Z) - Learning to Control PDEs with Differentiable Physics [102.36050646250871]
We present a novel hierarchical predictor-corrector scheme which enables neural networks to learn to understand and control complex nonlinear physical systems over long time frames.
We demonstrate that our method successfully develops an understanding of complex physical systems and learns to control them for tasks involving PDEs.
arXiv Detail & Related papers (2020-01-21T11:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.