Impact of Video Processing Operations in Deepfake Detection
- URL: http://arxiv.org/abs/2303.17247v1
- Date: Thu, 30 Mar 2023 09:24:17 GMT
- Title: Impact of Video Processing Operations in Deepfake Detection
- Authors: Yuhang Lu and Touradj Ebrahimi
- Abstract summary: Digital face manipulation in video has attracted extensive attention due to the increased risk to public trust.
Deep learning-based deepfake detection methods have been developed and have shown impressive results.
The performance of these detectors is often evaluated using benchmarks that hardly reflect real-world situations.
- Score: 13.334500258498798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The detection of digital face manipulation in video has attracted extensive
attention due to the increased risk to public trust. To counteract the
malicious usage of such techniques, deep learning-based deepfake detection
methods have been developed and have shown impressive results. However, the
performance of these detectors is often evaluated using benchmarks that hardly
reflect real-world situations. For example, the impact of various video
processing operations on detection accuracy has not been systematically
assessed. To address this gap, this paper first analyzes numerous real-world
influencing factors and typical video processing operations. Then, a more
systematic assessment methodology is proposed, which allows for a quantitative
evaluation of a detector's robustness under the influence of different
processing operations. Moreover, substantial experiments have been carried out
on three popular deepfake detectors, which give detailed analyses on the impact
of each operation and bring insights to foster future research.
Related papers
- GazeForensics: DeepFake Detection via Gaze-guided Spatial Inconsistency
Learning [63.547321642941974]
We introduce GazeForensics, an innovative DeepFake detection method that utilizes gaze representation obtained from a 3D gaze estimation model.
Experiment results reveal that our proposed GazeForensics outperforms the current state-of-the-art methods.
arXiv Detail & Related papers (2023-11-13T04:48:33Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
We propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF)
Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts.
It adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination.
arXiv Detail & Related papers (2023-09-30T12:30:25Z) - MMNet: Multi-Collaboration and Multi-Supervision Network for Sequential
Deepfake Detection [81.59191603867586]
Sequential deepfake detection aims to identify forged facial regions with the correct sequence for recovery.
The recovery of forged images requires knowledge of the manipulation model to implement inverse transformations.
We propose Multi-Collaboration and Multi-Supervision Network (MMNet) that handles various spatial scales and sequential permutations in forged face images.
arXiv Detail & Related papers (2023-07-06T02:32:08Z) - Assessment Framework for Deepfake Detection in Real-world Situations [13.334500258498798]
Deep learning-based deepfake detection methods have exhibited remarkable performance.
The impact of various image and video processing operations and typical workflow distortions on detection accuracy has not been systematically measured.
A more reliable assessment framework is proposed to evaluate the performance of learning-based deepfake detectors in more realistic settings.
arXiv Detail & Related papers (2023-04-12T19:09:22Z) - Towards a Fair Comparison and Realistic Design and Evaluation Framework
of Android Malware Detectors [63.75363908696257]
We analyze 10 influential research works on Android malware detection using a common evaluation framework.
We identify five factors that, if not taken into account when creating datasets and designing detectors, significantly affect the trained ML models.
We conclude that the studied ML-based detectors have been evaluated optimistically, which justifies the good published results.
arXiv Detail & Related papers (2022-05-25T08:28:08Z) - A New Approach to Improve Learning-based Deepfake Detection in Realistic
Conditions [13.334500258498798]
Deep convolutional neural networks have achieved exceptional results on multiple detection and recognition tasks.
The impact of conventional distortions and processing operations found in imaging such as compression, noise, and enhancement are not sufficiently studied.
This paper proposes a more effective data augmentation scheme based on real-world image degradation process.
arXiv Detail & Related papers (2022-03-22T15:16:54Z) - A Novel Framework for Assessment of Learning-based Detectors in
Realistic Conditions with Application to Deepfake Detection [11.287342793740876]
This paper proposes a rigorous framework to assess performance of learning-based detectors in more realistic situations.
Inspired by the assessment results, a data augmentation strategy based on natural image degradation process is designed.
arXiv Detail & Related papers (2022-03-22T15:03:56Z) - Impact of Benign Modifications on Discriminative Performance of Deepfake
Detectors [11.881119750753648]
A large number of deepfake detectors have been proposed recently in order to identify such content.
Deepfakes are increasingly popular in both good faith applications such as in entertainment and maliciously intended manipulations such as in image and video forgery.
This paper proposes a more rigorous and systematic framework to assess the performance of deepfake detectors in more realistic situations.
arXiv Detail & Related papers (2021-11-14T22:50:39Z) - Finding Facial Forgery Artifacts with Parts-Based Detectors [73.08584805913813]
We design a series of forgery detection systems that each focus on one individual part of the face.
We use these detectors to perform detailed empirical analysis on the FaceForensics++, Celeb-DF, and Facebook Deepfake Detection Challenge datasets.
arXiv Detail & Related papers (2021-09-21T16:18:45Z) - Investigating the Impact of Pre-processing and Prediction Aggregation on
the DeepFake Detection Task [20.21594285488186]
We propose a pre-processing step to improve the training data quality and examine its effect on the performance of DeepFake detection.
We also propose and evaluate the effect of video-level prediction aggregation approaches.
arXiv Detail & Related papers (2020-06-12T11:16:02Z) - VideoForensicsHQ: Detecting High-quality Manipulated Face Videos [77.60295082172098]
We show how the performance of forgery detectors depends on the presence of artefacts that the human eye can see.
We introduce a new benchmark dataset for face video forgery detection, of unprecedented quality.
arXiv Detail & Related papers (2020-05-20T21:17:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.