論文の概要: HDR Imaging with Spatially Varying Signal-to-Noise Ratios
- arxiv url: http://arxiv.org/abs/2303.17253v1
- Date: Thu, 30 Mar 2023 09:32:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-31 13:48:01.004252
- Title: HDR Imaging with Spatially Varying Signal-to-Noise Ratios
- Title(参考訳): 空間可変信号-雑音比を用いたHDRイメージング
- Authors: Yiheng Chi, Xingguang Zhang, Stanley H. Chan
- Abstract要約: 低照度HDRイメージングでは、1つの露光におけるノイズは空間的に変化する。
既存の画像復号化アルゴリズムとHDR融合アルゴリズムはどちらもこの状況に対処できない。
本研究では,空間変化高ダイナミックレンジ(SV-)融合ネットワークと呼ばれる新しい手法を提案する。
- 参考スコア(独自算出の注目度): 15.525314212209564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While today's high dynamic range (HDR) image fusion algorithms are capable of
blending multiple exposures, the acquisition is often controlled so that the
dynamic range within one exposure is narrow. For HDR imaging in photon-limited
situations, the dynamic range can be enormous and the noise within one exposure
is spatially varying. Existing image denoising algorithms and HDR fusion
algorithms both fail to handle this situation, leading to severe limitations in
low-light HDR imaging. This paper presents two contributions. Firstly, we
identify the source of the problem. We find that the issue is associated with
the co-existence of (1) spatially varying signal-to-noise ratio, especially the
excessive noise due to very dark regions, and (2) a wide luminance range within
each exposure. We show that while the issue can be handled by a bank of
denoisers, the complexity is high. Secondly, we propose a new method called the
spatially varying high dynamic range (SV-HDR) fusion network to simultaneously
denoise and fuse images. We introduce a new exposure-shared block within our
custom-designed multi-scale transformer framework. In a variety of testing
conditions, the performance of the proposed SV-HDR is better than the existing
methods.
- Abstract(参考訳): 今日のハイダイナミックレンジ(HDR)画像融合アルゴリズムは複数の露光をブレンドできるが、取得は1つの露光内のダイナミックレンジが狭くなるように制御されることが多い。
光子制限状況におけるHDRイメージングでは、ダイナミックレンジは巨大であり、1つの露光におけるノイズは空間的に変化する。
既存の画像復調アルゴリズムとHDR融合アルゴリズムはどちらもこの状況に対処できず、低照度HDRイメージングでは厳しい限界が生じる。
本稿では2つの貢献について述べる。
まず、問題の原因を特定します。
その結果,(1)空間的に変化する信号対雑音比,特に極暗領域による過大ノイズ,(2)露光時の輝度範囲が広いこと,の共存が問題となることがわかった。
この問題はデノイザーの銀行によって処理できるが、複雑さが高いことを示している。
第2に,空間変化高ダイナミックレンジ(sv-hdr)融合ネットワークと呼ばれる,画像のデノベーションとヒューズを同時に行う新しい手法を提案する。
カスタム設計のマルチスケールトランスフレームワークに新しい露光共有ブロックを導入する。
様々な試験条件において,提案したSV-HDRの性能は既存手法よりも優れている。
関連論文リスト
- HDRT: Infrared Capture for HDR Imaging [8.208995723545502]
本稿では,高ダイナミックレンジサーマル(HDRT, High Dynamic Range Thermal)という,別途利用可能な赤外線センサを用いたHDR取得手法を提案する。
本稿では、赤外線とSDRを組み合わせてHDR画像を生成する新しいディープニューラルネットワーク(HDRTNet)を提案する。
オーバー露光画像とアンダー露光画像の量的および定性的な品質向上を示すとともに,複数の異なる照明条件下での撮影に頑健であることを示す。
論文 参考訳(メタデータ) (2024-06-08T13:43:44Z) - Exposure Diffusion: HDR Image Generation by Consistent LDR denoising [29.45922922270381]
我々は、伝統的に「ブラケット」と呼ばれるLDR画像の集合を融合させ、単一のHDR画像を生成するHDR画像キャプチャー文献からインスピレーションを得る。
有効なHDR結果を生成する複数のLDRブラケットを生成するために,複数の復調処理を運用する。
論文 参考訳(メタデータ) (2024-05-23T08:24:22Z) - Event-based Asynchronous HDR Imaging by Temporal Incident Light Modulation [54.64335350932855]
我々は,HDRイメージングの課題に関する重要な知見に基づいて,Pixel-Asynchronous HDRイメージングシステムを提案する。
提案システムでは,DVS(Dynamic Vision Sensors)とLCDパネルを統合する。
LCDパネルは、その透過性を変化させてDVSの照射インシデントを変調し、ピクセル非依存のイベントストリームをトリガーする。
論文 参考訳(メタデータ) (2024-03-14T13:45:09Z) - Towards High-quality HDR Deghosting with Conditional Diffusion Models [88.83729417524823]
高ダイナミックレンジ(LDR)画像は、既存のディープニューラルネットワーク(DNN)技術により、複数の低ダイナミックレンジ(LDR)画像から復元することができる。
DNNは、LDR画像が飽和度と大きな動きを持つ場合、ゴーストアーティファクトを生成する。
拡散モデルの条件としてLDR特徴を利用する画像生成としてHDRデゴースト問題を定式化する。
論文 参考訳(メタデータ) (2023-11-02T01:53:55Z) - Online Overexposed Pixels Hallucination in Videos with Adaptive
Reference Frame Selection [90.35085487641773]
低ダイナミックレンジ(LDR)カメラは広いダイナミックレンジ入力に対応できず、しばしば局所的な露出問題を引き起こす。
複雑な処理機構を使わずにこれらの成果物を削減できる学習ベースシステムを提案する。
論文 参考訳(メタデータ) (2023-08-29T17:40:57Z) - SMAE: Few-shot Learning for HDR Deghosting with Saturation-Aware Masked
Autoencoders [97.64072440883392]
そこで本研究では,SSHDRと呼ばれる2段階の訓練を通した短距離HDRイメージングを実現するための,新しい半教師付きアプローチを提案する。
以前の方法とは異なり、コンテンツを直接回復し、ゴーストを同時に除去することは、最適に達成することが難しい。
実験により、SSHDRは異なるデータセットの内外における定量的かつ定性的に最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-04-14T03:42:51Z) - Multi-Exposure HDR Composition by Gated Swin Transformer [8.619880437958525]
本稿では,Swin Transformerに基づく新しいマルチ露光融合モデルを提案する。
露光空間ピラミッドにおける遠距離文脈依存性を自己認識機構により活用する。
実験により,本モデルが現在のマルチ露光HDR画像モデルと同等の精度が得られることが示された。
論文 参考訳(メタデータ) (2023-03-15T15:38:43Z) - SJ-HD^2R: Selective Joint High Dynamic Range and Denoising Imaging for
Dynamic Scenes [17.867412310873732]
Ghosting artifacts, Motion blur, Lowfidelity in highlightは、高ダイナミックレンジ(LDR)イメージングにおける主な課題である。
本稿では,2つのサブネットワークを含むHDRとデノナイズパイプラインを提案する。
私たちは、最初の共同HDRとデノナイジングベンチマークデータセットを作成します。
論文 参考訳(メタデータ) (2022-06-20T07:49:56Z) - FlexHDR: Modelling Alignment and Exposure Uncertainties for Flexible HDR
Imaging [0.9185931275245008]
高品質なHDR結果を生成するためにアライメントと露出の不確かさをモデル化する新しいHDRイメージング技術を提案する。
本研究では,HDRを意識した不確実性を考慮したアライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・
実験結果から,本手法は最先端の高画質HDR画像を最大0.8dBPSNRで生成できることがわかった。
論文 参考訳(メタデータ) (2022-01-07T14:27:17Z) - Unsupervised Single Image Super-resolution Under Complex Noise [60.566471567837574]
本稿では,一般のSISRタスクを未知の劣化で扱うためのモデルベースunsupervised SISR法を提案する。
提案手法は, より小さなモデル (0.34M vs. 2.40M) だけでなく, より高速な技術 (SotA) 法 (約1dB PSNR) の現況を明らかに超えることができる。
論文 参考訳(メタデータ) (2021-07-02T11:55:40Z) - HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with
Large Motions [62.44802076971331]
マルチ露光LDR画像からHDR画像を合成するための新しいGANモデルHDR-GANを提案する。
本手法は,敵対学習を取り入れることで,欠落したコンテンツのある領域に忠実な情報を生成することができる。
論文 参考訳(メタデータ) (2020-07-03T11:42:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。