HDR Imaging with Spatially Varying Signal-to-Noise Ratios
- URL: http://arxiv.org/abs/2303.17253v2
- Date: Sun, 16 Apr 2023 01:45:30 GMT
- Title: HDR Imaging with Spatially Varying Signal-to-Noise Ratios
- Authors: Yiheng Chi, Xingguang Zhang, Stanley H. Chan
- Abstract summary: For low-light HDR imaging, the noise within one exposure is spatially varying.
Existing image denoising algorithms and HDR fusion algorithms both fail to handle this situation.
We propose a new method called the spatially varying high dynamic range (SV-) fusion network to simultaneously denoise and fuse images.
- Score: 15.525314212209564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While today's high dynamic range (HDR) image fusion algorithms are capable of
blending multiple exposures, the acquisition is often controlled so that the
dynamic range within one exposure is narrow. For HDR imaging in photon-limited
situations, the dynamic range can be enormous and the noise within one exposure
is spatially varying. Existing image denoising algorithms and HDR fusion
algorithms both fail to handle this situation, leading to severe limitations in
low-light HDR imaging. This paper presents two contributions. Firstly, we
identify the source of the problem. We find that the issue is associated with
the co-existence of (1) spatially varying signal-to-noise ratio, especially the
excessive noise due to very dark regions, and (2) a wide luminance range within
each exposure. We show that while the issue can be handled by a bank of
denoisers, the complexity is high. Secondly, we propose a new method called the
spatially varying high dynamic range (SV-HDR) fusion network to simultaneously
denoise and fuse images. We introduce a new exposure-shared block within our
custom-designed multi-scale transformer framework. In a variety of testing
conditions, the performance of the proposed SV-HDR is better than the existing
methods.
Related papers
- HDRT: Infrared Capture for HDR Imaging [8.208995723545502]
We propose a new approach, High Dynamic Range Thermal (HDRT), for HDR acquisition using a separate, commonly available, thermal infrared (IR) sensor.
We propose a novel deep neural method (HDRTNet) which combines IR and SDR content to generate HDR images.
We show substantial quantitative and qualitative quality improvements on both over- and under-exposed images, showing that our approach is robust to capturing in multiple different lighting conditions.
arXiv Detail & Related papers (2024-06-08T13:43:44Z) - Exposure Diffusion: HDR Image Generation by Consistent LDR denoising [29.45922922270381]
We seek inspiration from the HDR image capture literature that traditionally fuses sets of LDR images, called "brackets", to produce a single HDR image.
We operate multiple denoising processes to generate multiple LDR brackets that together form a valid HDR result.
arXiv Detail & Related papers (2024-05-23T08:24:22Z) - Event-based Asynchronous HDR Imaging by Temporal Incident Light Modulation [54.64335350932855]
We propose a Pixel-Asynchronous HDR imaging system, based on key insights into the challenges in HDR imaging.
Our proposed Asyn system integrates the Dynamic Vision Sensors (DVS) with a set of LCD panels.
The LCD panels modulate the irradiance incident upon the DVS by altering their transparency, thereby triggering the pixel-independent event streams.
arXiv Detail & Related papers (2024-03-14T13:45:09Z) - Towards High-quality HDR Deghosting with Conditional Diffusion Models [88.83729417524823]
High Dynamic Range (LDR) images can be recovered from several Low Dynamic Range (LDR) images by existing Deep Neural Networks (DNNs) techniques.
DNNs still generate ghosting artifacts when LDR images have saturation and large motion.
We formulate the HDR deghosting problem as an image generation that leverages LDR features as the diffusion model's condition.
arXiv Detail & Related papers (2023-11-02T01:53:55Z) - Online Overexposed Pixels Hallucination in Videos with Adaptive
Reference Frame Selection [90.35085487641773]
Low dynamic range (LDR) cameras cannot deal with wide dynamic range inputs, frequently leading to local overexposure issues.
We present a learning-based system to reduce these artifacts without resorting to complex processing mechanisms.
arXiv Detail & Related papers (2023-08-29T17:40:57Z) - SMAE: Few-shot Learning for HDR Deghosting with Saturation-Aware Masked
Autoencoders [97.64072440883392]
We propose a novel semi-supervised approach to realize few-shot HDR imaging via two stages of training, called SSHDR.
Unlikely previous methods, directly recovering content and removing ghosts simultaneously, which is hard to achieve optimum.
Experiments demonstrate that SSHDR outperforms state-of-the-art methods quantitatively and qualitatively within and across different datasets.
arXiv Detail & Related papers (2023-04-14T03:42:51Z) - Multi-Exposure HDR Composition by Gated Swin Transformer [8.619880437958525]
This paper provides a novel multi-exposure fusion model based on Swin Transformer.
We exploit the long distance contextual dependency in the exposure-space pyramid by the self-attention mechanism.
Experiments show that our model achieves the accuracy on par with current top performing multi-exposure HDR imaging models.
arXiv Detail & Related papers (2023-03-15T15:38:43Z) - SJ-HD^2R: Selective Joint High Dynamic Range and Denoising Imaging for
Dynamic Scenes [17.867412310873732]
Ghosting artifacts, motion blur, and low fidelity in highlight are the main challenges in High Dynamic Range (LDR) imaging.
We propose a joint HDR and denoising pipeline, containing two sub-networks.
We create the first joint HDR and denoising benchmark dataset.
arXiv Detail & Related papers (2022-06-20T07:49:56Z) - FlexHDR: Modelling Alignment and Exposure Uncertainties for Flexible HDR
Imaging [0.9185931275245008]
We present a new HDR imaging technique that models alignment and exposure uncertainties to produce high quality HDR results.
We introduce a strategy that learns to jointly align and assess the alignment and exposure reliability using an HDR-aware, uncertainty-driven attention map.
Experimental results show our method can produce better quality HDR images with up to 0.8dB PSNR improvement to the state-of-the-art.
arXiv Detail & Related papers (2022-01-07T14:27:17Z) - Unsupervised Single Image Super-resolution Under Complex Noise [60.566471567837574]
This paper proposes a model-based unsupervised SISR method to deal with the general SISR task with unknown degradations.
The proposed method can evidently surpass the current state of the art (SotA) method (about 1dB PSNR) not only with a slighter model (0.34M vs. 2.40M) but also faster speed.
arXiv Detail & Related papers (2021-07-02T11:55:40Z) - HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with
Large Motions [62.44802076971331]
We propose a novel GAN-based model, HDR-GAN, for synthesizing HDR images from multi-exposed LDR images.
By incorporating adversarial learning, our method is able to produce faithful information in the regions with missing content.
arXiv Detail & Related papers (2020-07-03T11:42:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.