Event-based Asynchronous HDR Imaging by Temporal Incident Light Modulation
- URL: http://arxiv.org/abs/2403.09392v1
- Date: Thu, 14 Mar 2024 13:45:09 GMT
- Title: Event-based Asynchronous HDR Imaging by Temporal Incident Light Modulation
- Authors: Yuliang Wu, Ganchao Tan, Jinze Chen, Wei Zhai, Yang Cao, Zheng-Jun Zha,
- Abstract summary: We propose a Pixel-Asynchronous HDR imaging system, based on key insights into the challenges in HDR imaging.
Our proposed Asyn system integrates the Dynamic Vision Sensors (DVS) with a set of LCD panels.
The LCD panels modulate the irradiance incident upon the DVS by altering their transparency, thereby triggering the pixel-independent event streams.
- Score: 54.64335350932855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic Range (DR) is a pivotal characteristic of imaging systems. Current frame-based cameras struggle to achieve high dynamic range imaging due to the conflict between globally uniform exposure and spatially variant scene illumination. In this paper, we propose AsynHDR, a Pixel-Asynchronous HDR imaging system, based on key insights into the challenges in HDR imaging and the unique event-generating mechanism of Dynamic Vision Sensors (DVS). Our proposed AsynHDR system integrates the DVS with a set of LCD panels. The LCD panels modulate the irradiance incident upon the DVS by altering their transparency, thereby triggering the pixel-independent event streams. The HDR image is subsequently decoded from the event streams through our temporal-weighted algorithm. Experiments under standard test platform and several challenging scenes have verified the feasibility of the system in HDR imaging task.
Related papers
- Exposure Completing for Temporally Consistent Neural High Dynamic Range Video Rendering [17.430726543786943]
We propose a novel paradigm to render HDR frames via completing the absent exposure information.
Our approach involves interpolating neighbor LDR frames in the time dimension to reconstruct LDR frames for the absent exposures.
This benefits the fusing process for HDR results, reducing noise and ghosting artifacts therefore improving temporal consistency.
arXiv Detail & Related papers (2024-07-18T09:13:08Z) - Generating Content for HDR Deghosting from Frequency View [56.103761824603644]
Recent Diffusion Models (DMs) have been introduced in HDR imaging field.
DMs require extensive iterations with large models to estimate entire images.
We propose the Low-Frequency aware Diffusion (LF-Diff) model for ghost-free HDR imaging.
arXiv Detail & Related papers (2024-04-01T01:32:11Z) - Towards High-quality HDR Deghosting with Conditional Diffusion Models [88.83729417524823]
High Dynamic Range (LDR) images can be recovered from several Low Dynamic Range (LDR) images by existing Deep Neural Networks (DNNs) techniques.
DNNs still generate ghosting artifacts when LDR images have saturation and large motion.
We formulate the HDR deghosting problem as an image generation that leverages LDR features as the diffusion model's condition.
arXiv Detail & Related papers (2023-11-02T01:53:55Z) - Self-Supervised High Dynamic Range Imaging with Multi-Exposure Images in
Dynamic Scenes [58.66427721308464]
Self is a self-supervised reconstruction method that only requires dynamic multi-exposure images during training.
Self achieves superior results against the state-of-the-art self-supervised methods, and comparable performance to supervised ones.
arXiv Detail & Related papers (2023-10-03T07:10:49Z) - LAN-HDR: Luminance-based Alignment Network for High Dynamic Range Video
Reconstruction [20.911738532410766]
We propose an end-to-end HDR video composition framework, which aligns LDR frames in feature space and then merges aligned features into an HDR frame.
In training, we adopt a temporal loss, in addition to frame reconstruction losses, to enhance temporal consistency and thus reduce flickering.
arXiv Detail & Related papers (2023-08-22T01:43:00Z) - Self-Supervised Scene Dynamic Recovery from Rolling Shutter Images and
Events [63.984927609545856]
Event-based Inter/intra-frame Compensator (E-IC) is proposed to predict the per-pixel dynamic between arbitrary time intervals.
We show that the proposed method achieves state-of-the-art and shows remarkable performance for event-based RS2GS inversion in real-world scenarios.
arXiv Detail & Related papers (2023-04-14T05:30:02Z) - SMAE: Few-shot Learning for HDR Deghosting with Saturation-Aware Masked
Autoencoders [97.64072440883392]
We propose a novel semi-supervised approach to realize few-shot HDR imaging via two stages of training, called SSHDR.
Unlikely previous methods, directly recovering content and removing ghosts simultaneously, which is hard to achieve optimum.
Experiments demonstrate that SSHDR outperforms state-of-the-art methods quantitatively and qualitatively within and across different datasets.
arXiv Detail & Related papers (2023-04-14T03:42:51Z) - SJ-HD^2R: Selective Joint High Dynamic Range and Denoising Imaging for
Dynamic Scenes [17.867412310873732]
Ghosting artifacts, motion blur, and low fidelity in highlight are the main challenges in High Dynamic Range (LDR) imaging.
We propose a joint HDR and denoising pipeline, containing two sub-networks.
We create the first joint HDR and denoising benchmark dataset.
arXiv Detail & Related papers (2022-06-20T07:49:56Z) - HDR Reconstruction from Bracketed Exposures and Events [12.565039752529797]
Reconstruction of high-quality HDR images is at the core of modern computational photography.
We present a multi-modal end-to-end learning-based HDR imaging system that fuses bracketed images and event in the feature domain.
Our framework exploits the higher temporal resolution of events by sub-sampling the input event streams using a sliding window.
arXiv Detail & Related papers (2022-03-28T15:04:41Z) - Self-supervised HDR Imaging from Motion and Exposure Cues [14.57046548797279]
We propose a novel self-supervised approach for learnable HDR estimation that alleviates the need for HDR ground-truth labels.
Experimental results show that the HDR models trained using our proposed self-supervision approach achieve performance competitive with those trained under full supervision.
arXiv Detail & Related papers (2022-03-23T10:22:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.