論文の概要: Fault Tolerant Non-Clifford State Preparation for Arbitrary Rotations
- arxiv url: http://arxiv.org/abs/2303.17380v1
- Date: Thu, 30 Mar 2023 13:46:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-31 13:19:17.272292
- Title: Fault Tolerant Non-Clifford State Preparation for Arbitrary Rotations
- Title(参考訳): 任意回転に対するフォールトトレラント非クリフォード状態準備
- Authors: Hyeongrak Choi, Frederic T. Chong, Dirk Englund, Yongshan Ding
- Abstract要約: ゲートテレポーテーションのための資源状態を効率的に作成するためのポストセレクションに基づくアルゴリズムを提案する。
提案アルゴリズムは,符号距離による論理誤差の指数的抑制を実証し,耐故障性を実現する。
提案手法は,誤り訂正型およびノイズの多い中間規模量子コンピュータにおいて,量子アルゴリズムのリソース要求を削減するための有望な経路を示す。
- 参考スコア(独自算出の注目度): 3.47670594338385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error correction is an essential component for practical quantum
computing on noisy quantum hardware. However, logical operations on
error-corrected qubits require a significant resource overhead, especially for
high-precision and high-fidelity non-Clifford rotation gates. To address this
issue, we propose a postselection-based algorithm to efficiently prepare
resource states for gate teleportation. Our algorithm achieves fault tolerance,
demonstrating the exponential suppression of logical errors with code distance,
and it applies to any stabilizer codes. We provide analytical derivations and
numerical simulations of the fidelity and success probability of the algorithm.
We benchmark the method on surface code and show a factor of 100 to 10,000
reduction in space-time overhead compared to existing methods. Overall, our
approach presents a promising path to reducing the resource requirement for
quantum algorithms on error-corrected and noisy intermediate-scale quantum
computers.
- Abstract(参考訳): 量子誤差補正は、ノイズ量子ハードウェア上での実用的な量子コンピューティングに不可欠なコンポーネントである。
しかし、誤り訂正量子ビット上の論理演算は、特に高精度で高忠実な非クリフォード回転ゲートに対して、重要なリソースオーバーヘッドを必要とする。
そこで,本稿では,ゲートテレポーテーションのための資源状態を効率的に作成するためのポストセレクションに基づくアルゴリズムを提案する。
本アルゴリズムは, 符号距離による論理誤差の指数的抑制を実証し, 耐故障性を実現し, 安定化符号に適用する。
アルゴリズムの忠実性と成功確率の解析的導出と数値シミュレーションを提供する。
提案手法を表面コードでベンチマークし, 既存の手法と比較して, 時空オーバーヘッドが100~10,000削減できることを示した。
全体として,本手法は,誤り訂正型および雑音型中間スケール量子コンピュータにおける量子アルゴリズムのリソース要求を削減するための有望な経路を示す。
関連論文リスト
- Application of zero-noise extrapolation-based quantum error mitigation to a silicon spin qubit [0.08603957004874943]
シリコンスピン量子ビットプラットフォーム上でのゼロノイズ外挿による誤差低減手法の実装について報告する。
この技術は超伝導量子ビット、トラップイオン量子ビット、フォトニックプロセッサなどの他のプラットフォームで実証されている。
論文 参考訳(メタデータ) (2024-10-14T09:51:21Z) - Algorithmic Fault Tolerance for Fast Quantum Computing [37.448838730002905]
本研究では,幅広い種類の量子コードに対して,一定の時間オーバーヘッドでフォールトトレラントな論理演算を実行できることを示す。
理想的な測定結果分布からの偏差をコード距離で指数関数的に小さくできることを示す。
我々の研究は、フォールトトレランスの理論に新たな光を当て、実用的なフォールトトレラント量子計算の時空間コストを桁違いに削減する可能性がある。
論文 参考訳(メタデータ) (2024-06-25T15:43:25Z) - T-Count Optimizing Genetic Algorithm for Quantum State Preparation [0.05999777817331316]
本稿では,Clifford+Tゲートセットのゲートからなる状態準備回路に対して,遺伝的アルゴリズムを提案する。
我々のアルゴリズムは、最もエラーが多いコンポーネントの数が減少するフォールトトレラント実装可能なソリューションを自動的に生成する。
論文 参考訳(メタデータ) (2024-06-06T12:26:14Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
量子ビット実装のマルチレベル構造から生じる計算部分空間から漏れること。
パラメトリックフラックス変調を用いた超伝導量子ビットの資源効率向上のためのユニバーサルリーク低減ユニットを提案する。
繰り返し重み付け安定化器測定におけるリーク低減ユニットの使用により,検出されたエラーの総数を,スケーラブルな方法で削減できることを実証した。
論文 参考訳(メタデータ) (2023-09-13T16:21:32Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
非クリフォードゲートのこのオーバーヘッドを低減するためのプロトコルを導入する。
予備的な結果は、より広い距離で高品質な忠実さを示唆している。
論文 参考訳(メタデータ) (2022-11-18T06:03:10Z) - Erasure conversion for fault-tolerant quantum computing in alkaline
earth Rydberg atom arrays [3.575043595126111]
本稿では,物理誤差を消去に変換する171ドルYb中性原子量子ビットに対して,量子ビット符号化とゲートプロトコルを提案する。
エラーの98%を消去に変換できると見積もっている。
論文 参考訳(メタデータ) (2022-01-10T18:56:31Z) - Fundamental limits of quantum error mitigation [0.0]
本稿では, サンプリングオーバーヘッドの関数として, 誤差軽減アルゴリズムが計算誤差を低減する方法を示す。
この結果から、与えられた量子誤り軽減戦略が最適であり、改善の余地があるかどうかを識別する手段が提供される。
論文 参考訳(メタデータ) (2021-09-09T17:56:14Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。