Anatomically aware dual-hop learning for pulmonary embolism detection in CT pulmonary angiograms
- URL: http://arxiv.org/abs/2303.17593v2
- Date: Fri, 17 May 2024 15:00:30 GMT
- Title: Anatomically aware dual-hop learning for pulmonary embolism detection in CT pulmonary angiograms
- Authors: Florin Condrea, Saikiran Rapaka, Lucian Itu, Puneet Sharma, Jonathan Sperl, A Mohamed Ali, Marius Leordeanu,
- Abstract summary: We introduce a deep learning based approach, which efficiently combines computer vision and deep neural networks for pulmonary embolism detection.
Our method features novel improvements along three axes: 1) automatic detection of anatomical structures; 2) anatomical aware pretraining, neural and 3) a dual-hop deep net for PE detection.
- Score: 8.112976210963243
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pulmonary Embolisms (PE) represent a leading cause of cardiovascular death. While medical imaging, through computed tomographic pulmonary angiography (CTPA), represents the gold standard for PE diagnosis, it is still susceptible to misdiagnosis or significant diagnosis delays, which may be fatal for critical cases. Despite the recently demonstrated power of deep learning to bring a significant boost in performance in a wide range of medical imaging tasks, there are still very few published researches on automatic pulmonary embolism detection. Herein we introduce a deep learning based approach, which efficiently combines computer vision and deep neural networks for pulmonary embolism detection in CTPA. Our method features novel improvements along three orthogonal axes: 1) automatic detection of anatomical structures; 2) anatomical aware pretraining, and 3) a dual-hop deep neural net for PE detection. We obtain state-of-the-art results on the publicly available multicenter large-scale RSNA dataset.
Related papers
- Robust deep labeling of radiological emphysema subtypes using squeeze
and excitation convolutional neural networks: The MESA Lung and SPIROMICS
Studies [34.200556207264974]
Pulmonary emphysema is the progressive, irreversible loss of lung tissue.
Recent work has led to the unsupervised learning of ten spatially-informed lung texture patterns (ss) on lung CT.
We present a robust 3-D squeeze-and-excitation model for supervised classification of ss CNNs and CTES on lung CT.
arXiv Detail & Related papers (2024-03-01T03:45:56Z) - Detecting Pulmonary Embolism from Computed Tomography Using
Convolutional Neural Network [0.0]
This study will use a deep learning approach to detect pulmonary embolism in all patients who take a CT image of the chest using a convolutional neural network.
With the proposed pulmonary embolism detection system, we can detect the possibility of pulmonary embolism at the same time as the patient's first CT image.
arXiv Detail & Related papers (2022-06-03T00:01:47Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Attention based CNN-LSTM Network for Pulmonary Embolism Prediction on
Chest Computed Tomography Pulmonary Angiograms [22.62583095023903]
Pulmonary Embolism (PE) is among the most fatal cardiovascular diseases.
We propose a two-stage attention-based CNN-LSTM network for predicting PE.
Our framework mirrors the radiologic diagnostic process via a multi-slice approach.
arXiv Detail & Related papers (2021-07-13T17:58:15Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Pulmonary embolism identification in computerized tomography pulmonary
angiography scans with deep learning technologies in COVID-19 patients [0.65756807269289]
We present some of the most accurate and fast deep learning models for pulmonary embolism identification inA-Scans images, through classification and localization (object detection) approaches for patients infected by COVID-19.
We provide a fast-track solution (system) for the research community of the area, which combines both classification and object detection models for improving the precision of identifying pulmonary embolisms.
arXiv Detail & Related papers (2021-05-24T10:23:21Z) - Fibrosis-Net: A Tailored Deep Convolutional Neural Network Design for
Prediction of Pulmonary Fibrosis Progression from Chest CT Images [59.622239796473885]
Pulmonary fibrosis is a chronic lung disease that causes irreparable lung tissue scarring and damage, resulting in progressive loss in lung capacity and no known cure.
We introduce Fibrosis-Net, a deep convolutional neural network design tailored for the prediction of pulmonary fibrosis progression from chest CT images.
arXiv Detail & Related papers (2021-03-06T02:16:41Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Automatic Diagnosis of Pulmonary Embolism Using an Attention-guided
Framework: A Large-scale Study [5.4009326643013065]
Pulmonary Embolism (PE) is a life-threatening disorder associated with high mortality and morbidity.
We explored a deep learning model to detect PE on volumetric contrast-enhanced chest CT scans using a 2-stage training strategy.
arXiv Detail & Related papers (2020-05-29T20:46:24Z) - Deep Learning for Automatic Pneumonia Detection [72.55423549641714]
Pneumonia is the leading cause of death among young children and one of the top mortality causes worldwide.
Computer-aided diagnosis systems showed the potential for improving diagnostic accuracy.
We develop the computational approach for pneumonia regions detection based on single-shot detectors, squeeze-and-excitation deep convolution neural networks, augmentations and multi-task learning.
arXiv Detail & Related papers (2020-05-28T10:54:34Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
Early detection of head and neck tumors is crucial for patient survival.
Hyperspectral imaging (HSI) can be used for non-invasive detection of head and neck tumors.
We present multiple deep learning techniques for in-vivo laryngeal cancer detection based on HSI.
arXiv Detail & Related papers (2020-04-21T17:07:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.