論文の概要: Comparing Abstractive Summaries Generated by ChatGPT to Real Summaries
Through Blinded Reviewers and Text Classification Algorithms
- arxiv url: http://arxiv.org/abs/2303.17650v3
- Date: Mon, 28 Aug 2023 09:34:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-30 00:13:50.450887
- Title: Comparing Abstractive Summaries Generated by ChatGPT to Real Summaries
Through Blinded Reviewers and Text Classification Algorithms
- Title(参考訳): ブラインドレビュアーとテキスト分類アルゴリズムによるChatGPTから生成された抽象要約と実要約の比較
- Authors: Mayank Soni and Vincent Wade
- Abstract要約: OpenAIが開発したChatGPTは、言語モデルのファミリに最近追加されたものだ。
自動メトリクスと視覚障害者による抽象要約におけるChatGPTの性能評価を行った。
- 参考スコア(独自算出の注目度): 0.8339831319589133
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have gathered significant attention due to their
impressive performance on a variety of tasks. ChatGPT, developed by OpenAI, is
a recent addition to the family of language models and is being called a
disruptive technology by a few, owing to its human-like text-generation
capabilities. Although, many anecdotal examples across the internet have
evaluated ChatGPT's strength and weakness, only a few systematic research
studies exist. To contribute to the body of literature of systematic research
on ChatGPT, we evaluate the performance of ChatGPT on Abstractive Summarization
by the means of automated metrics and blinded human reviewers. We also build
automatic text classifiers to detect ChatGPT generated summaries. We found that
while text classification algorithms can distinguish between real and generated
summaries, humans are unable to distinguish between real summaries and those
produced by ChatGPT.
- Abstract(参考訳): 大きな言語モデル(LLM)は、様々なタスクにおける印象的なパフォーマンスのために大きな注目を集めています。
OpenAIが開発したChatGPTは、言語モデルのファミリに最近追加されたもので、ヒューマンライクなテキスト生成機能のために、少数の人々によって破壊的技術と呼ばれている。
インターネット上の多くの逸話的な例はチャットgptの強みと弱みを評価しているが、体系的な研究は少ない。
本稿では,ChatGPTの体系的な研究の体系化に寄与するため,自動メトリクスと視覚障害者による抽象要約におけるChatGPTの性能評価を行った。
chatgpt生成の要約を検出する自動テキスト分類器も構築した。
テキスト分類アルゴリズムは実要約と生成要約を区別できるが,人間は実要約とchatgptで生成された要約を区別できないことがわかった。
関連論文リスト
- DEMASQ: Unmasking the ChatGPT Wordsmith [63.8746084667206]
そこで本研究では,ChatGPT生成内容を正確に識別する効果的なChatGPT検出器DEMASQを提案する。
提案手法は, 人為的, 機械的, 人為的, 人為的, 機械的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人
論文 参考訳(メタデータ) (2023-11-08T21:13:05Z) - Detecting ChatGPT: A Survey of the State of Detecting ChatGPT-Generated
Text [1.9643748953805937]
生成言語モデルは、人間が生成したように見える人工的なテキストを生成することによって、潜在的に騙される可能性がある。
この調査は、人間が生成したテキストとChatGPTを区別するために使われている現在のアプローチの概要を提供する。
論文 参考訳(メタデータ) (2023-09-14T13:05:20Z) - Is ChatGPT Involved in Texts? Measure the Polish Ratio to Detect
ChatGPT-Generated Text [48.36706154871577]
我々はHPPT(ChatGPT-polished academic abstracts)と呼ばれる新しいデータセットを紹介する。
純粋なChatGPT生成テキストの代わりに、人書きとChatGPTポリケートされた抽象文のペアを構成することで、既存のコーパスから分岐する。
また,ChatGPTによる修正の度合いを,オリジナルの人文テキストと比較した革新的な尺度であるPolish Ratio法を提案する。
論文 参考訳(メタデータ) (2023-07-21T06:38:37Z) - To ChatGPT, or not to ChatGPT: That is the question! [78.407861566006]
本研究は,ChatGPT検出における最新の手法を包括的かつ現代的に評価するものである。
我々は、ChatGPTと人間からのプロンプトからなるベンチマークデータセットをキュレートし、医療、オープンQ&A、ファイナンスドメインからの多様な質問を含む。
評価の結果,既存の手法ではChatGPT生成内容を効果的に検出できないことがわかった。
論文 参考訳(メタデータ) (2023-04-04T03:04:28Z) - Comparative Analysis of CHATGPT and the evolution of language models [0.0]
本稿では,機械翻訳,機械要約,質問応答,言語生成など,NLPにおける一般的な考え方を紹介する。
大規模言語モデルの安全な大規模導入例として,ChatGPTの議論と結果を検証するための戦略をまとめて提示する。
論文 参考訳(メタデータ) (2023-03-28T03:11:28Z) - Is ChatGPT a Good NLG Evaluator? A Preliminary Study [121.77986688862302]
NLG測定値として信頼性を示すため,ChatGPTのメタ評価を行った。
実験の結果,ChatGPTは従来の自動測定値と比較して,人間の判断と最先端あるいは競合的な相関を達成できた。
我々の予備研究は、汎用的な信頼性のあるNLGメトリックの出現を促すことを願っている。
論文 参考訳(メタデータ) (2023-03-07T16:57:20Z) - Can ChatGPT Understand Too? A Comparative Study on ChatGPT and
Fine-tuned BERT [103.57103957631067]
チャットGPTは、人間の質問に対する流動的で高品質な応答を生成できるため、大きな注目を集めている。
そこで我々は,ChatGPTの理解能力を,最も人気のあるGLUEベンチマークで評価し,より詳細な4種類のBERTスタイルのモデルと比較した。
2)ChatGPTは,感情分析や質問応答タスクにおいて,BERTと同等のパフォーマンスを達成している。
論文 参考訳(メタデータ) (2023-02-19T12:29:33Z) - Exploring the Limits of ChatGPT for Query or Aspect-based Text
Summarization [28.104696513516117]
GPT3やChatGPTのような大規模言語モデル(LLM)は、テキスト要約タスクにこれらのモデルを使用することに大きな関心を寄せている。
最近の研究では、zhang2023ベンチマーキング(zhang2023benchmarking)は、LLMの生成するニュースサマリーがすでに人間と同等であることを示している。
実験の結果,ChatGPTの性能はルージュスコアの点で従来の微調整手法に匹敵することがわかった。
論文 参考訳(メタデータ) (2023-02-16T04:41:30Z) - Is ChatGPT a General-Purpose Natural Language Processing Task Solver? [113.22611481694825]
大規模言語モデル(LLM)は、さまざまな自然言語処理(NLP)タスクをゼロショットで実行できることを実証している。
近年、ChatGPTのデビューは自然言語処理(NLP)コミュニティから大きな注目を集めている。
ChatGPTが多くのNLPタスクをゼロショットで実行できるジェネラリストモデルとして機能するかどうかはまだ分かっていない。
論文 参考訳(メタデータ) (2023-02-08T09:44:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。