Why is plausibility surprisingly problematic as an XAI criterion?
- URL: http://arxiv.org/abs/2303.17707v4
- Date: Fri, 30 May 2025 16:29:09 GMT
- Title: Why is plausibility surprisingly problematic as an XAI criterion?
- Authors: Weina Jin, Xiaoxiao Li, Ghassan Hamarneh,
- Abstract summary: Plausibility is usually quantified by metrics of feature localization or feature correlation.<n>Our examination shows that plausibility is invalid to measure explainability, and human explanations are not the ground truth for XAI.<n>Due to the invalidity of measurements and the unethical issues, this paper argues that the community should stop using plausibility as a criterion for the evaluation and optimization of XAI algorithms.
- Score: 38.0428570713717
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Explainable artificial intelligence (XAI) is motivated by the problem of making AI predictions understandable, transparent, and responsible, as AI becomes increasingly impactful in society and high-stakes domains. The evaluation and optimization criteria of XAI are gatekeepers for XAI algorithms to achieve their expected goals and should withstand rigorous inspection. To improve the scientific rigor of XAI, we conduct a critical examination of a common XAI criterion: plausibility. Plausibility assesses how convincing the AI explanation is to humans, and is usually quantified by metrics of feature localization or feature correlation. Our examination shows that plausibility is invalid to measure explainability, and human explanations are not the ground truth for XAI, because doing so ignores the necessary assumptions underpinning an explanation. Our examination further reveals the consequences of using plausibility as an XAI criterion, including increasing misleading explanations that manipulate users, deteriorating users' trust in the AI system, undermining human autonomy, being unable to achieve complementary human-AI task performance, and abandoning other possible approaches of enhancing understandability. Due to the invalidity of measurements and the unethical issues, this position paper argues that the community should stop using plausibility as a criterion for the evaluation and optimization of XAI algorithms. We also delineate new research approaches to improve XAI in trustworthiness, understandability, and utility to users, including complementary human-AI task performance.
Related papers
- The AI Imperative: Scaling High-Quality Peer Review in Machine Learning [49.87236114682497]
We argue that AI-assisted peer review must become an urgent research and infrastructure priority.<n>We propose specific roles for AI in enhancing factual verification, guiding reviewer performance, assisting authors in quality improvement, and supporting ACs in decision-making.
arXiv Detail & Related papers (2025-06-09T18:37:14Z) - A Multi-Layered Research Framework for Human-Centered AI: Defining the Path to Explainability and Trust [2.4578723416255754]
Human-Centered AI (HCAI) emphasizes alignment with human values, while Explainable AI (XAI) enhances transparency by making AI decisions more understandable.
This paper presents a novel three-layered framework that bridges HCAI and XAI to establish a structured explainability paradigm.
Our findings advance Human-Centered Explainable AI (HCXAI), fostering AI systems that are transparent, adaptable, and ethically aligned.
arXiv Detail & Related papers (2025-04-14T01:29:30Z) - Study on the Helpfulness of Explainable Artificial Intelligence [0.0]
Legal, business, and ethical requirements motivate using effective XAI.
We propose to evaluate XAI methods via the user's ability to successfully perform a proxy task.
In other words, we address the helpfulness of XAI for human decision-making.
arXiv Detail & Related papers (2024-10-14T14:03:52Z) - Dataset | Mindset = Explainable AI | Interpretable AI [36.001670039529586]
"explainable" Artificial Intelligence (XAI)" and "interpretable AI (IAI)" interchangeably when we apply various XAI tools for a given dataset to explain the reasons that underpin machine learning (ML) outputs.
We argue that XAI is a subset of IAI. The concept of IAI is beyond the sphere of a dataset. It includes the domain of a mindset.
We aim to clarify these notions and lay the foundation of XAI, IAI, EAI, and TAI for many practitioners and policymakers in future AI applications and research.
arXiv Detail & Related papers (2024-08-22T14:12:53Z) - Investigating the Role of Explainability and AI Literacy in User Compliance [2.8623940003518156]
We find that users' compliance increases with the introduction of XAI but is also affected by AI literacy.
We also find that the relationships between AI literacy XAI and users' compliance are mediated by the users' mental model of AI.
arXiv Detail & Related papers (2024-06-18T14:28:12Z) - A Critical Survey on Fairness Benefits of Explainable AI [10.81142163495028]
We identify seven archetypal claims from 175 scientific articles on the alleged fairness benefits of XAI.
We notice that claims are often vague and simplistic, lacking normative grounding, or poorly aligned with the actual capabilities of XAI.
We suggest to conceive XAI not as an ethical panacea but as one of many tools to approach the multidimensional, sociotechnical challenge of algorithmic fairness.
arXiv Detail & Related papers (2023-10-15T08:17:45Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
Mistakes in AI systems are inevitable, arising from both technical limitations and sociotechnical gaps.
We propose that seamful design can foster AI explainability by revealing sociotechnical and infrastructural mismatches.
We explore this process with 43 AI practitioners and real end-users.
arXiv Detail & Related papers (2022-11-12T21:54:05Z) - Transcending XAI Algorithm Boundaries through End-User-Inspired Design [27.864338632191608]
Lacking explainability-focused functional support for end users may hinder the safe and responsible use of AI in high-stakes domains.
Our work shows that grounding the technical problem in end users' use of XAI can inspire new research questions.
Such end-user-inspired research questions have the potential to promote social good by democratizing AI and ensuring the responsible use of AI in critical domains.
arXiv Detail & Related papers (2022-08-18T09:44:51Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
A lack of consensus on how to evaluate explainable AI (XAI) hinders the advancement of the field.
We argue that one way to close the gap is to develop evaluation methods that account for different user requirements.
arXiv Detail & Related papers (2022-06-22T05:17:33Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
We propose a user-centred framework for XAI that focuses on its social-interactive aspect.
The framework aims to provide a structure for interactive XAI solutions thought for non-expert users.
arXiv Detail & Related papers (2021-09-27T09:56:23Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Explainable Artificial Intelligence Approaches: A Survey [0.22940141855172028]
Lack of explainability of a decision from an Artificial Intelligence based "black box" system/model is a key stumbling block for adopting AI in high stakes applications.
We demonstrate popular Explainable Artificial Intelligence (XAI) methods with a mutual case study/task.
We analyze for competitive advantages from multiple perspectives.
We recommend paths towards responsible or human-centered AI using XAI as a medium.
arXiv Detail & Related papers (2021-01-23T06:15:34Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
We study whether features that reveal case-specific model information can calibrate trust and improve the joint performance of the human and AI.
We show that confidence score can help calibrate people's trust in an AI model, but trust calibration alone is not sufficient to improve AI-assisted decision making.
arXiv Detail & Related papers (2020-01-07T15:33:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.