A Multi-Layered Research Framework for Human-Centered AI: Defining the Path to Explainability and Trust
- URL: http://arxiv.org/abs/2504.13926v2
- Date: Sat, 26 Apr 2025 01:53:27 GMT
- Title: A Multi-Layered Research Framework for Human-Centered AI: Defining the Path to Explainability and Trust
- Authors: Chameera De Silva, Thilina Halloluwa, Dhaval Vyas,
- Abstract summary: Human-Centered AI (HCAI) emphasizes alignment with human values, while Explainable AI (XAI) enhances transparency by making AI decisions more understandable.<n>This paper presents a novel three-layered framework that bridges HCAI and XAI to establish a structured explainability paradigm.<n>Our findings advance Human-Centered Explainable AI (HCXAI), fostering AI systems that are transparent, adaptable, and ethically aligned.
- Score: 2.4578723416255754
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of Artificial Intelligence (AI) into high-stakes domains such as healthcare, finance, and autonomous systems is often constrained by concerns over transparency, interpretability, and trust. While Human-Centered AI (HCAI) emphasizes alignment with human values, Explainable AI (XAI) enhances transparency by making AI decisions more understandable. However, the lack of a unified approach limits AI's effectiveness in critical decision-making scenarios. This paper presents a novel three-layered framework that bridges HCAI and XAI to establish a structured explainability paradigm. The framework comprises (1) a foundational AI model with built-in explainability mechanisms, (2) a human-centered explanation layer that tailors explanations based on cognitive load and user expertise, and (3) a dynamic feedback loop that refines explanations through real-time user interaction. The framework is evaluated across healthcare, finance, and software development, demonstrating its potential to enhance decision-making, regulatory compliance, and public trust. Our findings advance Human-Centered Explainable AI (HCXAI), fostering AI systems that are transparent, adaptable, and ethically aligned.
Related papers
- Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
Recent advancements in AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment.
The lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment.
We introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML)
arXiv Detail & Related papers (2024-06-13T16:03:25Z) - Applications of Explainable artificial intelligence in Earth system science [12.454478986296152]
This review aims to provide a foundational understanding of explainable AI (XAI)
XAI offers a set of powerful tools that make the models more transparent.
We identify four significant challenges that XAI faces within the Earth system science (ESS)
A visionary outlook for ESS envisions a harmonious blend where process-based models govern the known, AI models explore the unknown, and XAI bridges the gap by providing explanations.
arXiv Detail & Related papers (2024-06-12T15:05:29Z) - Towards Human-AI Deliberation: Design and Evaluation of LLM-Empowered Deliberative AI for AI-Assisted Decision-Making [47.33241893184721]
In AI-assisted decision-making, humans often passively review AI's suggestion and decide whether to accept or reject it as a whole.
We propose Human-AI Deliberation, a novel framework to promote human reflection and discussion on conflicting human-AI opinions in decision-making.
Based on theories in human deliberation, this framework engages humans and AI in dimension-level opinion elicitation, deliberative discussion, and decision updates.
arXiv Detail & Related papers (2024-03-25T14:34:06Z) - Explainable AI for Safe and Trustworthy Autonomous Driving: A Systematic Review [12.38351931894004]
We present the first systematic literature review of explainable methods for safe and trustworthy autonomous driving.
We identify five key contributions of XAI for safe and trustworthy AI in AD, which are interpretable design, interpretable surrogate models, interpretable monitoring, auxiliary explanations, and interpretable validation.
We propose a modular framework called SafeX to integrate these contributions, enabling explanation delivery to users while simultaneously ensuring the safety of AI models.
arXiv Detail & Related papers (2024-02-08T09:08:44Z) - Advancing Explainable AI Toward Human-Like Intelligence: Forging the
Path to Artificial Brain [0.7770029179741429]
The intersection of Artificial Intelligence (AI) and neuroscience in Explainable AI (XAI) is pivotal for enhancing transparency and interpretability in complex decision-making processes.
This paper explores the evolution of XAI methodologies, ranging from feature-based to human-centric approaches.
The challenges in achieving explainability in generative models, ensuring responsible AI practices, and addressing ethical implications are discussed.
arXiv Detail & Related papers (2024-02-07T14:09:11Z) - Emergent Explainability: Adding a causal chain to neural network
inference [0.0]
This position paper presents a theoretical framework for enhancing explainable artificial intelligence (xAI) through emergent communication (EmCom)
We explore the novel integration of EmCom into AI systems, offering a paradigm shift from conventional associative relationships between inputs and outputs to a more nuanced, causal interpretation.
The paper discusses the theoretical underpinnings of this approach, its potential broad applications, and its alignment with the growing need for responsible and transparent AI systems.
arXiv Detail & Related papers (2024-01-29T02:28:39Z) - Why is plausibility surprisingly problematic as an XAI criterion? [38.0428570713717]
We conduct the first critical examination of a common XAI criterion: plausibility.
It measures how convincing the AI explanation is to humans.
We do not recommend using plausibility as a criterion to evaluate or optimize XAI algorithms.
arXiv Detail & Related papers (2023-03-30T20:59:44Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
Mistakes in AI systems are inevitable, arising from both technical limitations and sociotechnical gaps.
We propose that seamful design can foster AI explainability by revealing sociotechnical and infrastructural mismatches.
We explore this process with 43 AI practitioners and real end-users.
arXiv Detail & Related papers (2022-11-12T21:54:05Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.