Stable magnetic levitation of soft ferromagnets for macroscopic quantum
mechanics
- URL: http://arxiv.org/abs/2303.17847v2
- Date: Wed, 9 Aug 2023 08:15:11 GMT
- Title: Stable magnetic levitation of soft ferromagnets for macroscopic quantum
mechanics
- Authors: Maria Fuwa
- Abstract summary: We propose a system for passive magnetic levitation and three-dimensional harmonic trapping of soft ferromagnets.
The utilization of soft ferromagnet's internal collective spin excitation may allow quantum mechanical phenomena with particles as large as the sub-millimeter-scale.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a system for passive magnetic levitation and three-dimensional
harmonic trapping of soft ferromagnets. Our protocol utilizes the magnetic
field gradient for vertical trapping, and the finite size effect of the
Meissner effect for horizontal trapping. We provide numerical and analytical
estimations of possible mechanical dissipations to show that our system allows
high mechanical Q-factors above $ Q > 10^8 $, and quantum control of the
levitated object is within reach of current technologies. The utilization of
soft ferromagnet's internal collective spin excitation may allow quantum
mechanical phenomena with particles as large as the sub-millimeter-scale.
Related papers
- Characterisation of a levitated sub-mg ferromagnetic cube in a planar alternating-current magnetic Paul trap [0.0]
We characterize a sub-mgmagnetic cube levitated in an alternating-current planar magnetic Paul trap at room temperature.
This technique sets out a path for MHz librational modes in the micron-sized particle limit, allowing for magnetic coupling to superconducting circuits and spin-based quantum systems.
arXiv Detail & Related papers (2024-08-13T11:54:34Z) - Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Magnetic levitation within a microwave cavity: characterization,
challenges, and possibilities [0.0]
Low energy losses in superconducting magnetic levitation make it attractive for exciting applications in physics.
Meissner levitation within the microwave cavity could open avenues for the novel cavity optomechanical system.
arXiv Detail & Related papers (2022-07-04T20:13:54Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - Quantum control of a nanoparticle optically levitated in cryogenic free
space [0.0]
Tests of quantum mechanics on a macroscopic scale require extreme control over mechanical motion and its decoherence.
In this work, we optically levitate a femto-gram dielectric particle in cryogenic free space.
We cool its center-of-mass motion by measurement-based feedback to an average occupancy of 0.65 motional quanta, corresponding to a state purity of 43%.
arXiv Detail & Related papers (2021-03-05T18:12:50Z) - Demonstrating levitation within a microwave cavity [0.0]
We report the first successful experiments with a levitated millimeter-scale neodymium magnet within a centimeter-scale superconducting aluminum coaxial quarter-wave stub cavity.
Resonance spectra are collected via a vector network analyzer (VNA) between temperatures of 5 K and 50 mK revealing movement of the magnet inside of the cavity.
arXiv Detail & Related papers (2021-01-05T01:42:09Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum Size Effects in the Magnetic Susceptibility of a Metallic
Nanoparticle [0.0]
We theoretically study quantum size effects in the magnetic response of a spherical metallic nanoparticles.
We compute the induced magnetic moment and the magnetic susceptibility for a nanoparticles in the presence of a static external magnetic field.
We propose two methods for experimental detection of the quantum size effects based on the coupling to superconducting quantum interference devices.
arXiv Detail & Related papers (2020-10-27T15:28:25Z) - Ferromagnetic Gyroscopes for Tests of Fundamental Physics [49.853792068336034]
A ferromagnetic gyroscope (FG) is a ferromagnet whose angular momentum is dominated by electron spin polarization and that will precess under the action of an external torque.
We model and analyze FG dynamics and sensitivity, focusing on practical schemes for experimental realization.
arXiv Detail & Related papers (2020-10-17T07:13:50Z) - Energy and momentum conservation in spin transfer [77.34726150561087]
We show that energy and linear momentum conservation laws impose strong constraints on the properties of magnetic excitations induced by spin transfer.
Our results suggest the possibility to achieve precise control of spin transfer-driven magnetization dynamics.
arXiv Detail & Related papers (2020-04-04T15:43:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.