CoSMo: a Framework to Instantiate Conditioned Process Simulation Models
- URL: http://arxiv.org/abs/2303.17879v4
- Date: Tue, 25 Jun 2024 07:44:31 GMT
- Title: CoSMo: a Framework to Instantiate Conditioned Process Simulation Models
- Authors: Rafael S. Oyamada, Gabriel M. Tavares, Sylvio Barbon Junior, Paolo Ceravolo,
- Abstract summary: This paper introduces a novel recurrent neural architecture tailored to discover COnditioned process Simulation MOdels (CoSMo) based on user-based constraints or any other nature of a-priori knowledge.
This architecture facilitates the simulation of event logs that adhere to specific constraints by incorporating declarative-based rules into the learning phase as an attempt to fill the gap of incorporating information into deep learning models to perform what-if analysis.
- Score: 1.6021728114882514
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Process simulation is gaining attention for its ability to assess potential performance improvements and risks associated with business process changes. The existing literature presents various techniques, generally grounded in process models discovered from event log data or built upon deep learning algorithms. These techniques have specific strengths and limitations. Traditional data-driven approaches offer increased interpretability, while deep learning-based excel at generalizing changes across large event logs. However, the practical application of deep learning faces challenges related to managing stochasticity and integrating information for what-if analysis. This paper introduces a novel recurrent neural architecture tailored to discover COnditioned process Simulation MOdels (CoSMo) based on user-based constraints or any other nature of a-priori knowledge. This architecture facilitates the simulation of event logs that adhere to specific constraints by incorporating declarative-based rules into the learning phase as an attempt to fill the gap of incorporating information into deep learning models to perform what-if analysis. Experimental validation illustrates CoSMo's efficacy in simulating event logs while adhering to predefined declarative conditions, emphasizing both control-flow and data-flow perspectives.
Related papers
- AgentSimulator: An Agent-based Approach for Data-driven Business Process Simulation [6.590869939300887]
Business process simulation (BPS) is a versatile technique for estimating process performance across various scenarios.
This paper introduces AgentSimulator, a resource-first BPS approach that discovers a multi-agent system from an event log.
Our experiments show that AgentSimulator achieves computation state-of-the-art simulation accuracy with significantly lower times than existing approaches.
arXiv Detail & Related papers (2024-08-16T07:19:11Z) - MISS: Memory-efficient Instance Segmentation Framework By Visual Inductive Priors Flow Propagation [8.727456619750983]
The strategic integration of a visual prior into the training dataset emerges as a potential solution to enhance congruity with the testing data distribution.
Our empirical evaluations underscore the efficacy of MISS, demonstrating commendable performance in scenarios characterized by limited data availability and memory constraints.
arXiv Detail & Related papers (2024-03-18T08:52:23Z) - Discovering Hierarchical Process Models: an Approach Based on Events
Clustering [0.0]
We present an algorithm for discovering hierarchical process models represented as two-level workflow nets.
Unlike existing solutions, our algorithm does not impose restrictions on the process control flow and allows for iteration.
arXiv Detail & Related papers (2023-03-12T11:05:40Z) - iSAGE: An Incremental Version of SAGE for Online Explanation on Data
Streams [8.49072000414555]
iSAGE is a time- and memory-efficient incrementalization of SAGE.
We show that iSAGE adheres to similar theoretical properties as SAGE.
arXiv Detail & Related papers (2023-03-02T11:51:54Z) - GLUECons: A Generic Benchmark for Learning Under Constraints [102.78051169725455]
In this work, we create a benchmark that is a collection of nine tasks in the domains of natural language processing and computer vision.
We model external knowledge as constraints, specify the sources of the constraints for each task, and implement various models that use these constraints.
arXiv Detail & Related papers (2023-02-16T16:45:36Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
We propose a retrieval-augmented approach, which retrieves schema-aware Reference As Prompt (RAP) for data-efficient knowledge graph construction.
RAP can dynamically leverage schema and knowledge inherited from human-annotated and weak-supervised data as a prompt for each sample.
arXiv Detail & Related papers (2022-10-19T16:40:28Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Meta-learning using privileged information for dynamics [66.32254395574994]
We extend the Neural ODE Process model to use additional information within the Learning Using Privileged Information setting.
We validate our extension with experiments showing improved accuracy and calibration on simulated dynamics tasks.
arXiv Detail & Related papers (2021-04-29T12:18:02Z) - Learning Accurate Business Process Simulation Models from Event Logs via
Automated Process Discovery and Deep Learning [0.8164433158925593]
Data-Driven Simulation (DDS) methods learn process simulation models from event logs.
Deep Learning (DL) models are able to accurately capture such temporal dynamics.
This paper presents a hybrid approach to learn process simulation models from event logs.
arXiv Detail & Related papers (2021-03-22T15:34:57Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.