AgentSimulator: An Agent-based Approach for Data-driven Business Process Simulation
- URL: http://arxiv.org/abs/2408.08571v1
- Date: Fri, 16 Aug 2024 07:19:11 GMT
- Title: AgentSimulator: An Agent-based Approach for Data-driven Business Process Simulation
- Authors: Lukas Kirchdorfer, Robert Blümel, Timotheus Kampik, Han van der Aa, Heiner Stuckenschmidt,
- Abstract summary: Business process simulation (BPS) is a versatile technique for estimating process performance across various scenarios.
This paper introduces AgentSimulator, a resource-first BPS approach that discovers a multi-agent system from an event log.
Our experiments show that AgentSimulator achieves computation state-of-the-art simulation accuracy with significantly lower times than existing approaches.
- Score: 6.590869939300887
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Business process simulation (BPS) is a versatile technique for estimating process performance across various scenarios. Traditionally, BPS approaches employ a control-flow-first perspective by enriching a process model with simulation parameters. Although such approaches can mimic the behavior of centrally orchestrated processes, such as those supported by workflow systems, current control-flow-first approaches cannot faithfully capture the dynamics of real-world processes that involve distinct resource behavior and decentralized decision-making. Recognizing this issue, this paper introduces AgentSimulator, a resource-first BPS approach that discovers a multi-agent system from an event log, modeling distinct resource behaviors and interaction patterns to simulate the underlying process. Our experiments show that AgentSimulator achieves state-of-the-art simulation accuracy with significantly lower computation times than existing approaches while providing high interpretability and adaptability to different types of process-execution scenarios.
Related papers
- BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning [78.63421517563056]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.
We present a unified probabilistic framework that formalizes LLM reasoning through a novel graphical model.
We introduce the Bootstrapping Reinforced Thinking Process (BRiTE) algorithm, which works in two steps.
arXiv Detail & Related papers (2025-01-31T02:39:07Z) - Multi-Agent Sampling: Scaling Inference Compute for Data Synthesis with Tree Search-Based Agentic Collaboration [81.45763823762682]
This work aims to bridge the gap by investigating the problem of data synthesis through multi-agent sampling.
We introduce Tree Search-based Orchestrated Agents(TOA), where the workflow evolves iteratively during the sequential sampling process.
Our experiments on alignment, machine translation, and mathematical reasoning demonstrate that multi-agent sampling significantly outperforms single-agent sampling as inference compute scales.
arXiv Detail & Related papers (2024-12-22T15:16:44Z) - Active Sequential Posterior Estimation for Sample-Efficient Simulation-Based Inference [12.019504660711231]
We introduce sequential neural posterior estimation (ASNPE)
ASNPE brings an active learning scheme into the inference loop to estimate the utility of simulation parameter candidates to the underlying probabilistic model.
Our method outperforms well-tuned benchmarks and state-of-the-art posterior estimation methods on a large-scale real-world traffic network.
arXiv Detail & Related papers (2024-12-07T08:57:26Z) - Benchmarking Agentic Workflow Generation [80.74757493266057]
We introduce WorFBench, a unified workflow generation benchmark with multi-faceted scenarios and intricate graph workflow structures.
We also present WorFEval, a systemic evaluation protocol utilizing subsequence and subgraph matching algorithms.
We observe that the generated can enhance downstream tasks, enabling them to achieve superior performance with less time during inference.
arXiv Detail & Related papers (2024-10-10T12:41:19Z) - Discovery and Simulation of Data-Aware Business Processes [0.28675177318965045]
This paper introduces a data-aware BPS modeling approach and a method to discover data-aware BPS models from event logs.
The resulting BPS models more closely replicate the process execution control flow relative to data-unaware BPS models.
arXiv Detail & Related papers (2024-08-24T20:13:00Z) - A Modular Framework for Reinforcement Learning Optimal Execution [68.8204255655161]
We develop a modular framework for the application of Reinforcement Learning to the problem of Optimal Trade Execution.
The framework is designed with flexibility in mind, in order to ease the implementation of different simulation setups.
arXiv Detail & Related papers (2022-08-11T09:40:42Z) - Mingling Foresight with Imagination: Model-Based Cooperative Multi-Agent
Reinforcement Learning [15.12491397254381]
We propose an implicit model-based multi-agent reinforcement learning method based on value decomposition methods.
Under this method, agents can interact with the learned virtual environment and evaluate the current state value according to imagined future states.
arXiv Detail & Related papers (2022-04-20T12:16:27Z) - Learning Accurate Business Process Simulation Models from Event Logs via
Automated Process Discovery and Deep Learning [0.8164433158925593]
Data-Driven Simulation (DDS) methods learn process simulation models from event logs.
Deep Learning (DL) models are able to accurately capture such temporal dynamics.
This paper presents a hybrid approach to learn process simulation models from event logs.
arXiv Detail & Related papers (2021-03-22T15:34:57Z) - CoCoMoT: Conformance Checking of Multi-Perspective Processes via SMT
(Extended Version) [62.96267257163426]
We introduce the CoCoMoT (Computing Conformance Modulo Theories) framework.
First, we show how SAT-based encodings studied in the pure control-flow setting can be lifted to our data-aware case.
Second, we introduce a novel preprocessing technique based on a notion of property-preserving clustering.
arXiv Detail & Related papers (2021-03-18T20:22:50Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
This paper proposes a set of benchmarks and a framework for the study of various algorithms aimed to transfer models and policies learnt in simulation to the real world.
We conduct experiments on a wide range of well known simulated environments to characterize and offer insights into the performance of different algorithms.
Our analysis can be useful for practitioners working in this area and can help make informed choices about the behavior and main properties of sim-to-real algorithms.
arXiv Detail & Related papers (2020-11-17T22:24:26Z) - PipeSim: Trace-driven Simulation of Large-Scale AI Operations Platforms [4.060731229044571]
We present a trace-driven simulation-based experimentation and analytics environment for large-scale AI systems.
Analytics data from a production-grade AI platform developed at IBM are used to build a comprehensive simulation model.
We implement the model in a standalone, discrete event simulator, and provide a toolkit for running experiments.
arXiv Detail & Related papers (2020-06-22T19:55:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.