CIRCLE: Capture In Rich Contextual Environments
- URL: http://arxiv.org/abs/2303.17912v1
- Date: Fri, 31 Mar 2023 09:18:12 GMT
- Title: CIRCLE: Capture In Rich Contextual Environments
- Authors: Joao Pedro Araujo, Jiaman Li, Karthik Vetrivel, Rishi Agarwal, Deepak
Gopinath, Jiajun Wu, Alexander Clegg, C. Karen Liu
- Abstract summary: We propose a novel motion acquisition system in which the actor perceives and operates in a highly contextual virtual world.
We present CIRCLE, a dataset containing 10 hours of full-body reaching motion from 5 subjects across nine scenes.
We use this dataset to train a model that generates human motion conditioned on scene information.
- Score: 69.97976304918149
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthesizing 3D human motion in a contextual, ecological environment is
important for simulating realistic activities people perform in the real world.
However, conventional optics-based motion capture systems are not suited for
simultaneously capturing human movements and complex scenes. The lack of rich
contextual 3D human motion datasets presents a roadblock to creating
high-quality generative human motion models. We propose a novel motion
acquisition system in which the actor perceives and operates in a highly
contextual virtual world while being motion captured in the real world. Our
system enables rapid collection of high-quality human motion in highly diverse
scenes, without the concern of occlusion or the need for physical scene
construction in the real world. We present CIRCLE, a dataset containing 10
hours of full-body reaching motion from 5 subjects across nine scenes, paired
with ego-centric information of the environment represented in various forms,
such as RGBD videos. We use this dataset to train a model that generates human
motion conditioned on scene information. Leveraging our dataset, the model
learns to use ego-centric scene information to achieve nontrivial reaching
tasks in the context of complex 3D scenes. To download the data please visit
https://stanford-tml.github.io/circle_dataset/.
Related papers
- Generating Human Interaction Motions in Scenes with Text Control [66.74298145999909]
We present TeSMo, a method for text-controlled scene-aware motion generation based on denoising diffusion models.
Our approach begins with pre-training a scene-agnostic text-to-motion diffusion model.
To facilitate training, we embed annotated navigation and interaction motions within scenes.
arXiv Detail & Related papers (2024-04-16T16:04:38Z) - LaserHuman: Language-guided Scene-aware Human Motion Generation in Free Environment [27.38638713080283]
We introduce LaserHuman, a pioneering dataset engineered to revolutionize Scene-Text-to-Motion research.
LaserHuman stands out with its inclusion of genuine human motions within 3D environments.
We propose a multi-conditional diffusion model, which is simple but effective, achieving state-of-the-art performance on existing datasets.
arXiv Detail & Related papers (2024-03-20T05:11:10Z) - ParaHome: Parameterizing Everyday Home Activities Towards 3D Generative
Modeling of Human-Object Interactions [11.32229757116179]
We introduce the ParaHome system, designed to capture dynamic 3D movements of humans and objects within a common home environment.
By leveraging the ParaHome system, we collect a novel large-scale dataset of human-object interaction.
arXiv Detail & Related papers (2024-01-18T18:59:58Z) - Revisit Human-Scene Interaction via Space Occupancy [55.67657438543008]
Human-scene Interaction (HSI) generation is a challenging task and crucial for various downstream tasks.
In this work, we argue that interaction with a scene is essentially interacting with the space occupancy of the scene from an abstract physical perspective.
By treating pure motion sequences as records of humans interacting with invisible scene occupancy, we can aggregate motion-only data into a large-scale paired human-occupancy interaction database.
arXiv Detail & Related papers (2023-12-05T12:03:00Z) - Synthesizing Diverse Human Motions in 3D Indoor Scenes [16.948649870341782]
We present a novel method for populating 3D indoor scenes with virtual humans that can navigate in the environment and interact with objects in a realistic manner.
Existing approaches rely on training sequences that contain captured human motions and the 3D scenes they interact with.
We propose a reinforcement learning-based approach that enables virtual humans to navigate in 3D scenes and interact with objects realistically and autonomously.
arXiv Detail & Related papers (2023-05-21T09:22:24Z) - HUMANISE: Language-conditioned Human Motion Generation in 3D Scenes [54.61610144668777]
We present a novel scene-and-language conditioned generative model that can produce 3D human motions in 3D scenes.
Our experiments demonstrate that our model generates diverse and semantically consistent human motions in 3D scenes.
arXiv Detail & Related papers (2022-10-18T10:14:11Z) - HSPACE: Synthetic Parametric Humans Animated in Complex Environments [67.8628917474705]
We build a large-scale photo-realistic dataset, Human-SPACE, of animated humans placed in complex indoor and outdoor environments.
We combine a hundred diverse individuals of varying ages, gender, proportions, and ethnicity, with hundreds of motions and scenes, in order to generate an initial dataset of over 1 million frames.
Assets are generated automatically, at scale, and are compatible with existing real time rendering and game engines.
arXiv Detail & Related papers (2021-12-23T22:27:55Z) - Stochastic Scene-Aware Motion Prediction [41.6104600038666]
We present a novel data-driven, synthesis motion method that models different styles of performing a given action with a target object.
Our method, called SAMP, for SceneAware Motion Prediction, generalizes to target objects of various geometries while enabling the character to navigate in cluttered scenes.
arXiv Detail & Related papers (2021-08-18T17:56:17Z) - iGibson, a Simulation Environment for Interactive Tasks in Large
Realistic Scenes [54.04456391489063]
iGibson is a novel simulation environment to develop robotic solutions for interactive tasks in large-scale realistic scenes.
Our environment contains fifteen fully interactive home-sized scenes populated with rigid and articulated objects.
iGibson features enable the generalization of navigation agents, and that the human-iGibson interface and integrated motion planners facilitate efficient imitation learning of simple human demonstrated behaviors.
arXiv Detail & Related papers (2020-12-05T02:14:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.