Revisit Human-Scene Interaction via Space Occupancy
- URL: http://arxiv.org/abs/2312.02700v2
- Date: Fri, 12 Jul 2024 06:25:13 GMT
- Title: Revisit Human-Scene Interaction via Space Occupancy
- Authors: Xinpeng Liu, Haowen Hou, Yanchao Yang, Yong-Lu Li, Cewu Lu,
- Abstract summary: Human-scene Interaction (HSI) generation is a challenging task and crucial for various downstream tasks.
In this work, we argue that interaction with a scene is essentially interacting with the space occupancy of the scene from an abstract physical perspective.
By treating pure motion sequences as records of humans interacting with invisible scene occupancy, we can aggregate motion-only data into a large-scale paired human-occupancy interaction database.
- Score: 55.67657438543008
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Human-scene Interaction (HSI) generation is a challenging task and crucial for various downstream tasks. However, one of the major obstacles is its limited data scale. High-quality data with simultaneously captured human and 3D environments is hard to acquire, resulting in limited data diversity and complexity. In this work, we argue that interaction with a scene is essentially interacting with the space occupancy of the scene from an abstract physical perspective, leading us to a unified novel view of Human-Occupancy Interaction. By treating pure motion sequences as records of humans interacting with invisible scene occupancy, we can aggregate motion-only data into a large-scale paired human-occupancy interaction database: Motion Occupancy Base (MOB). Thus, the need for costly paired motion-scene datasets with high-quality scene scans can be substantially alleviated. With this new unified view of Human-Occupancy interaction, a single motion controller is proposed to reach the target state given the surrounding occupancy. Once trained on MOB with complex occupancy layout, which is stringent to human movements, the controller could handle cramped scenes and generalize well to general scenes with limited complexity like regular living rooms. With no GT 3D scenes for training, our method can generate realistic and stable HSI motions in diverse scenarios, including both static and dynamic scenes. The project is available at https://foruck.github.io/occu-page/.
Related papers
- Human-Aware 3D Scene Generation with Spatially-constrained Diffusion Models [16.259040755335885]
Previous auto-regression-based 3D scene generation methods have struggled to accurately capture the joint distribution of multiple objects and input humans.
We introduce two spatial collision guidance mechanisms: human-object collision avoidance and object-room boundary constraints.
Our framework can generate more natural and plausible 3D scenes with precise human-scene interactions.
arXiv Detail & Related papers (2024-06-26T08:18:39Z) - Scaling Up Dynamic Human-Scene Interaction Modeling [58.032368564071895]
TRUMANS is the most comprehensive motion-captured HSI dataset currently available.
It intricately captures whole-body human motions and part-level object dynamics.
We devise a diffusion-based autoregressive model that efficiently generates HSI sequences of any length.
arXiv Detail & Related papers (2024-03-13T15:45:04Z) - Synthesizing Physically Plausible Human Motions in 3D Scenes [41.1310197485928]
We present a framework that enables physically simulated characters to perform long-term interaction tasks in diverse, cluttered, and unseen scenes.
Specifically, InterCon contains two complementary policies that enable characters to enter and leave the interacting state.
To generate interaction with objects at different places, we further design NavCon, a trajectory following policy, to keep characters' motions in the free space of 3D scenes.
arXiv Detail & Related papers (2023-08-17T15:17:49Z) - Synthesizing Diverse Human Motions in 3D Indoor Scenes [16.948649870341782]
We present a novel method for populating 3D indoor scenes with virtual humans that can navigate in the environment and interact with objects in a realistic manner.
Existing approaches rely on training sequences that contain captured human motions and the 3D scenes they interact with.
We propose a reinforcement learning-based approach that enables virtual humans to navigate in 3D scenes and interact with objects realistically and autonomously.
arXiv Detail & Related papers (2023-05-21T09:22:24Z) - CIRCLE: Capture In Rich Contextual Environments [69.97976304918149]
We propose a novel motion acquisition system in which the actor perceives and operates in a highly contextual virtual world.
We present CIRCLE, a dataset containing 10 hours of full-body reaching motion from 5 subjects across nine scenes.
We use this dataset to train a model that generates human motion conditioned on scene information.
arXiv Detail & Related papers (2023-03-31T09:18:12Z) - Task-Oriented Human-Object Interactions Generation with Implicit Neural
Representations [61.659439423703155]
TOHO: Task-Oriented Human-Object Interactions Generation with Implicit Neural Representations.
Our method generates continuous motions that are parameterized only by the temporal coordinate.
This work takes a step further toward general human-scene interaction simulation.
arXiv Detail & Related papers (2023-03-23T09:31:56Z) - Synthesizing Physical Character-Scene Interactions [64.26035523518846]
It is necessary to synthesize such interactions between virtual characters and their surroundings.
We present a system that uses adversarial imitation learning and reinforcement learning to train physically-simulated characters.
Our approach takes physics-based character motion generation a step closer to broad applicability.
arXiv Detail & Related papers (2023-02-02T05:21:32Z) - HUMANISE: Language-conditioned Human Motion Generation in 3D Scenes [54.61610144668777]
We present a novel scene-and-language conditioned generative model that can produce 3D human motions in 3D scenes.
Our experiments demonstrate that our model generates diverse and semantically consistent human motions in 3D scenes.
arXiv Detail & Related papers (2022-10-18T10:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.