Comparing Adversarial and Supervised Learning for Organs at Risk
Segmentation in CT images
- URL: http://arxiv.org/abs/2303.17941v1
- Date: Fri, 31 Mar 2023 10:10:05 GMT
- Title: Comparing Adversarial and Supervised Learning for Organs at Risk
Segmentation in CT images
- Authors: Leonardo Crespi, Mattia Portanti, Daniele Loiacono
- Abstract summary: Organ at Risk (OAR) segmentation from CT scans is a key component of the radiotherapy treatment workflow.
In this paper, we investigate the performance of Generative Adversarial Networks (GANs) compared to supervised learning approaches for segmenting OARs from CT images.
The results are very promising and show that the proposed GAN-based approaches are similar or superior to their CNN-based counterparts.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Organ at Risk (OAR) segmentation from CT scans is a key component of the
radiotherapy treatment workflow. In recent years, deep learning techniques have
shown remarkable potential in automating this process. In this paper, we
investigate the performance of Generative Adversarial Networks (GANs) compared
to supervised learning approaches for segmenting OARs from CT images. We
propose three GAN-based models with identical generator architectures but
different discriminator networks. These models are compared with
well-established CNN models, such as SE-ResUnet and DeepLabV3, using the
StructSeg dataset, which consists of 50 annotated CT scans containing contours
of six OARs. Our work aims to provide insight into the advantages and
disadvantages of adversarial training in the context of OAR segmentation. The
results are very promising and show that the proposed GAN-based approaches are
similar or superior to their CNN-based counterparts, particularly when
segmenting more challenging target organs.
Related papers
- Abnormality-Driven Representation Learning for Radiology Imaging [0.8321462983924758]
We introduce lesion-enhanced contrastive learning (LeCL), a novel approach to obtain visual representations driven by abnormalities in 2D axial slices across different locations of the CT scans.
We evaluate our approach across three clinical tasks: tumor lesion location, lung disease detection, and patient staging, benchmarking against four state-of-the-art foundation models.
arXiv Detail & Related papers (2024-11-25T13:53:26Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Multi-organ Segmentation Network with Adversarial Performance Validator [10.775440368500416]
This paper introduces an adversarial performance validation network into a 2D-to-3D segmentation framework.
The proposed network converts the 2D-coarse result to 3D high-quality segmentation masks in a coarse-to-fine manner, allowing joint optimization to improve segmentation accuracy.
Experiments on the NIH pancreas segmentation dataset demonstrate the proposed network achieves state-of-the-art accuracy on small organ segmentation and outperforms the previous best.
arXiv Detail & Related papers (2022-04-16T18:00:29Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - SECP-Net: SE-Connection Pyramid Network of Organ At Risk Segmentation
for Nasopharyngeal Carcinoma [0.0]
Deep learning models have been widely applied in medical image segmentation tasks.
Traditional deep neural networks underperform during segmentation due to the lack use of global and multi-size information.
This paper proposes a new SE-Connection Pyramid Network (SECP-Net) for improving the segmentation performance.
arXiv Detail & Related papers (2021-12-28T07:48:18Z) - Generalized Organ Segmentation by Imitating One-shot Reasoning using
Anatomical Correlation [55.1248480381153]
We propose OrganNet which learns a generalized organ concept from a set of annotated organ classes and then transfer this concept to unseen classes.
We show that OrganNet can effectively resist the wide variations in organ morphology and produce state-of-the-art results in one-shot segmentation task.
arXiv Detail & Related papers (2021-03-30T13:41:12Z) - TricycleGAN: Unsupervised Image Synthesis and Segmentation Based on
Shape Priors [0.0]
We introduce a novel network architecture for capable of unsupervised and semi-supervised image segmentation called TricycleGAN.
This approach uses three generative models to learn translations between medical images and segmentation maps using edge maps as an intermediate step.
We present experiments with TricycleGAN on a clinical dataset of kidney ultrasound images and the benchmark ISIC 2018 skin lesion dataset.
arXiv Detail & Related papers (2021-02-04T15:36:18Z) - Semi-supervised Semantic Segmentation of Prostate and Organs-at-Risk on
3D Pelvic CT Images [9.33145393480254]
Training effective deep learning models usually require a large amount of high-quality labeled data.
We developed a novel semi-supervised adversarial deep learning approach for 3D pelvic CT image semantic segmentation.
arXiv Detail & Related papers (2020-09-21T01:57:23Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
We propose a pairwise relation-based semi-supervised (PRS2) model for gland segmentation on histology images.
This model consists of a segmentation network (S-Net) and a pairwise relation network (PR-Net)
We evaluate our model against five recent methods on the GlaS dataset and three recent methods on the CRAG dataset.
arXiv Detail & Related papers (2020-08-06T15:02:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.