A Second-Order Majorant Algorithm for Nonnegative Matrix Factorization
- URL: http://arxiv.org/abs/2303.17992v3
- Date: Wed, 18 Jun 2025 07:19:17 GMT
- Title: A Second-Order Majorant Algorithm for Nonnegative Matrix Factorization
- Authors: Mai-Quyen Pham, Jérémy Cohen, Thierry Chonavel,
- Abstract summary: We introduce a general second-order optimization framework for NMF under both quadratic and $beta$-divergence loss functions.<n>Second-Order Majorant (SOM) constructs a local quadratic majorization of the loss function by majorizing its Hessian matrix.<n>We show that mSOM consistently outperforms state-of-the-art algorithms across multiple loss functions.
- Score: 2.646309221150203
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Nonnegative Matrix Factorization (NMF) is a fundamental tool in unsupervised learning, widely used for tasks such as dimensionality reduction, feature extraction, representation learning, and topic modeling. Many algorithms have been developed for NMF, including the well-known Multiplicative Updates (MU) algorithm, which belongs to a broader class of majorization-minimization techniques. In this work, we introduce a general second-order optimization framework for NMF under both quadratic and $\beta$-divergence loss functions. This approach, called Second-Order Majorant (SOM), constructs a local quadratic majorization of the loss function by majorizing its Hessian matrix. It includes MU as a special case, while enabling faster variants. In particular, we propose mSOM, a new algorithm within this class that leverages a tighter local approximation to accelerate convergence. We provide a convergence analysis, showing linear convergence for individual factor updates and global convergence to a stationary point for the alternating version, AmSOM algorithm. Numerical experiments on both synthetic and real data sets demonstrate that mSOM consistently outperforms state-of-the-art algorithms across multiple loss functions.
Related papers
- Stochastic Primal-Dual Double Block-Coordinate for Two-way Partial AUC Maximization [56.805574957824135]
Two-way partial AUCAUC is a critical performance metric for binary classification with imbalanced data.<n>Existing algorithms for TPAUC optimization remain under-explored.<n>We introduce two innovative double-coordinate block-coordinate algorithms for TPAUC optimization.
arXiv Detail & Related papers (2025-05-28T03:55:05Z) - Improving Algorithmic Efficiency using Cryptography [11.496343300483904]
We show how to use cryptography to improve the time complexity of solving computational problems.
We show that under standard cryptographic assumptions, we can design algorithms that are determinantally faster than existing ones.
arXiv Detail & Related papers (2025-02-18T17:08:59Z) - An Enhanced Zeroth-Order Stochastic Frank-Wolfe Framework for Constrained Finite-Sum Optimization [15.652261277429968]
We propose an enhanced zeroth-order convex computation Frank-Wolfe to address constrained finite-sum optimization problems.<n>Our method introduces a novel double variance reduction framework that effectively reduces the approximation induced by zeroth-order oracles.
arXiv Detail & Related papers (2025-01-13T10:53:19Z) - Towards a Fairer Non-negative Matrix Factorization [6.069820038869034]
We investigate how Non-negative Matrix Factorization (NMF) can introduce bias in the representation of data groups.
We present an approach, called Fairer-NMF, that seeks to minimize the maximum reconstruction loss for different groups.
arXiv Detail & Related papers (2024-11-14T23:34:38Z) - A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - Exponentially Convergent Algorithms for Supervised Matrix Factorization [2.1485350418225244]
Supervised factorization (SMF) is a machine learning method that converges extraction and classification tasks.
Our paper provides a novel framework that 'lifts' SMF as a low-rank estimation problem in a combined factor space estimation.
arXiv Detail & Related papers (2023-11-18T23:24:02Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Learning the Positions in CountSketch [49.57951567374372]
We consider sketching algorithms which first compress data by multiplication with a random sketch matrix, and then apply the sketch to quickly solve an optimization problem.
In this work, we propose the first learning-based algorithms that also optimize the locations of the non-zero entries.
arXiv Detail & Related papers (2023-06-11T07:28:35Z) - Majorization-minimization for Sparse Nonnegative Matrix Factorization
with the $\beta$-divergence [2.3787352248749376]
It is well known that the norm of the other factor (the dictionary matrix) needs to be controlled in order to avoid an ill-posed formulation.
Standard practice consists in constraining the columns of the dictionary to have unit norm, which leads to a nontrivial optimization problem.
We derive block-descent majorization-minimization algorithms that result in simple multiplicative updates for either $ell_1$-regularization or the more "aggressive" log-regularization.
arXiv Detail & Related papers (2022-07-13T16:09:29Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
We introduce a new inference scheme that avoids explicit construction of the covariance matrix.
Our approach couples a little-known diagonal estimation result from numerical linear algebra with the conjugate gradient algorithm.
On several simulations, our method scales better than existing approaches in computation time and memory.
arXiv Detail & Related papers (2022-02-25T16:35:26Z) - Matrix Reordering for Noisy Disordered Matrices: Optimality and
Computationally Efficient Algorithms [9.245687221460654]
Motivated by applications in single-cell biology and metagenomics, we investigate the problem of matrixing based on a noisy monotone Toeplitz matrix model.
We establish fundamental statistical limit for this problem in a decision-theoretic framework and demonstrate that a constrained least squares rate.
To address this, we propose a novel-time adaptive sorting algorithm with guaranteed performance improvement.
arXiv Detail & Related papers (2022-01-17T14:53:52Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
We solve a weakly supervised regression problem.
Under "weakly" we understand that for some training points the labels are known, for some unknown, and for others uncertain due to the presence of random noise or other reasons such as lack of resources.
In the numerical section, we applied the suggested method to artificial and real datasets using Monte-Carlo modeling.
arXiv Detail & Related papers (2021-04-13T23:21:01Z) - Self-supervised Symmetric Nonnegative Matrix Factorization [82.59905231819685]
Symmetric nonnegative factor matrix (SNMF) has demonstrated to be a powerful method for data clustering.
Inspired by ensemble clustering that aims to seek better clustering results, we propose self-supervised SNMF (S$3$NMF)
We take advantage of the sensitivity to code characteristic of SNMF, without relying on any additional information.
arXiv Detail & Related papers (2021-03-02T12:47:40Z) - A Scalable, Adaptive and Sound Nonconvex Regularizer for Low-rank Matrix
Completion [60.52730146391456]
We propose a new non scalable low-rank regularizer called "nuclear Frobenius norm" regularizer, which is adaptive and sound.
It bypasses the computation of singular values and allows fast optimization by algorithms.
It obtains state-of-the-art recovery performance while being the fastest in existing matrix learning methods.
arXiv Detail & Related papers (2020-08-14T18:47:58Z) - DeepMP for Non-Negative Sparse Decomposition [14.790515227906257]
Non-negative signals form an important class of sparse signals.
greedy and convex relaxed algorithms are among the most popular methods.
One such modification has been proposed for Matching Pursuit (MP) based algorithms.
arXiv Detail & Related papers (2020-07-28T14:52:06Z) - Positive Semidefinite Matrix Factorization: A Connection with Phase
Retrieval and Affine Rank Minimization [71.57324258813674]
We show that PSDMF algorithms can be designed based on phase retrieval (PR) and affine rank minimization (ARM) algorithms.
Motivated by this idea, we introduce a new family of PSDMF algorithms based on iterative hard thresholding (IHT)
arXiv Detail & Related papers (2020-07-24T06:10:19Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - Theoretical Convergence of Multi-Step Model-Agnostic Meta-Learning [63.64636047748605]
We develop a new theoretical framework to provide convergence guarantee for the general multi-step MAML algorithm.
In particular, our results suggest that an inner-stage step needs to be chosen inversely proportional to $N$ of inner-stage steps in order for $N$ MAML to have guaranteed convergence.
arXiv Detail & Related papers (2020-02-18T19:17:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.