Large Dimensional Independent Component Analysis: Statistical Optimality
and Computational Tractability
- URL: http://arxiv.org/abs/2303.18156v1
- Date: Fri, 31 Mar 2023 15:46:30 GMT
- Title: Large Dimensional Independent Component Analysis: Statistical Optimality
and Computational Tractability
- Authors: Arnab Auddy and Ming Yuan
- Abstract summary: We investigate the optimal statistical performance and the impact of computational constraints for independent component analysis (ICA)
We show that the optimal sample complexity is linear in dimensionality.
We develop computationally tractable estimates that attain both the optimal sample complexity and minimax optimal rates of convergence.
- Score: 13.104413212606577
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we investigate the optimal statistical performance and the
impact of computational constraints for independent component analysis (ICA).
Our goal is twofold. On the one hand, we characterize the precise role of
dimensionality on sample complexity and statistical accuracy, and how
computational consideration may affect them. In particular, we show that the
optimal sample complexity is linear in dimensionality, and interestingly, the
commonly used sample kurtosis-based approaches are necessarily suboptimal.
However, the optimal sample complexity becomes quadratic, up to a logarithmic
factor, in the dimension if we restrict ourselves to estimates that can be
computed with low-degree polynomial algorithms. On the other hand, we develop
computationally tractable estimates that attain both the optimal sample
complexity and minimax optimal rates of convergence. We study the asymptotic
properties of the proposed estimates and establish their asymptotic normality
that can be readily used for statistical inferences. Our method is fairly easy
to implement and numerical experiments are presented to further demonstrate its
practical merits.
Related papers
- Statistical Inference in Tensor Completion: Optimal Uncertainty Quantification and Statistical-to-Computational Gaps [7.174572371800217]
This paper presents a simple yet efficient method for statistical inference of tensor linear forms using incomplete and noisy observations.
It is suitable for various statistical inference tasks, including constructing confidence intervals, inference under heteroskedastic and sub-exponential noise, and simultaneous testing.
arXiv Detail & Related papers (2024-10-15T03:09:52Z) - Probabilistic Iterative Hard Thresholding for Sparse Learning [2.5782973781085383]
We present an approach towards solving expectation objective optimization problems with cardinality constraints.
We prove convergence of the underlying process, and demonstrate the performance on two Machine Learning problems.
arXiv Detail & Related papers (2024-09-02T18:14:45Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Generative modeling of time-dependent densities via optimal transport
and projection pursuit [3.069335774032178]
We propose a cheap alternative to popular deep learning algorithms for temporal modeling.
Our method is highly competitive compared with state-of-the-art solvers.
arXiv Detail & Related papers (2023-04-19T13:50:13Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Statistical Efficiency of Score Matching: The View from Isoperimetry [96.65637602827942]
We show a tight connection between statistical efficiency of score matching and the isoperimetric properties of the distribution being estimated.
We formalize these results both in the sample regime and in the finite regime.
arXiv Detail & Related papers (2022-10-03T06:09:01Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Stochastic Approximation for Online Tensorial Independent Component
Analysis [98.34292831923335]
Independent component analysis (ICA) has been a popular dimension reduction tool in statistical machine learning and signal processing.
In this paper, we present a by-product online tensorial algorithm that estimates for each independent component.
arXiv Detail & Related papers (2020-12-28T18:52:37Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.