Probabilistic Iterative Hard Thresholding for Sparse Learning
- URL: http://arxiv.org/abs/2409.01413v1
- Date: Mon, 2 Sep 2024 18:14:45 GMT
- Title: Probabilistic Iterative Hard Thresholding for Sparse Learning
- Authors: Matteo Bergamaschi, Andrea Cristofari, Vyacheslav Kungurtsev, Francesco Rinaldi,
- Abstract summary: We present an approach towards solving expectation objective optimization problems with cardinality constraints.
We prove convergence of the underlying process, and demonstrate the performance on two Machine Learning problems.
- Score: 2.5782973781085383
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For statistical modeling wherein the data regime is unfavorable in terms of dimensionality relative to the sample size, finding hidden sparsity in the ground truth can be critical in formulating an accurate statistical model. The so-called "l0 norm" which counts the number of non-zero components in a vector, is a strong reliable mechanism of enforcing sparsity when incorporated into an optimization problem. However, in big data settings wherein noisy estimates of the gradient must be evaluated out of computational necessity, the literature is scant on methods that reliably converge. In this paper we present an approach towards solving expectation objective optimization problems with cardinality constraints. We prove convergence of the underlying stochastic process, and demonstrate the performance on two Machine Learning problems.
Related papers
- Forecasting Outside the Box: Application-Driven Optimal Pointwise Forecasts for Stochastic Optimization [0.0]
We present an integrated learning and optimization procedure that yields the best approximation of an unknown situation.
Numerical results conducted with inventory problems from the literature as well as a bike-sharing problem with real data demonstrate that the proposed approach performs well.
arXiv Detail & Related papers (2024-11-05T21:54:50Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Distributed Semi-Supervised Sparse Statistical Inference [6.685997976921953]
A debiased estimator is a crucial tool in statistical inference for high-dimensional model parameters.
Traditional methods require computing a debiased estimator on every machine.
An efficient multi-round distributed debiased estimator, which integrates both labeled and unlabelled data, is developed.
arXiv Detail & Related papers (2023-06-17T17:30:43Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Optimal Learning via Moderate Deviations Theory [4.6930976245638245]
We develop a systematic construction of highly accurate confidence intervals by using a moderate deviation principle-based approach.
It is shown that the proposed confidence intervals are statistically optimal in the sense that they satisfy criteria regarding exponential accuracy, minimality, consistency, mischaracterization probability, and eventual uniformly most accurate (UMA) property.
arXiv Detail & Related papers (2023-05-23T19:57:57Z) - Numerically Stable Sparse Gaussian Processes via Minimum Separation
using Cover Trees [57.67528738886731]
We study the numerical stability of scalable sparse approximations based on inducing points.
For low-dimensional tasks such as geospatial modeling, we propose an automated method for computing inducing points satisfying these conditions.
arXiv Detail & Related papers (2022-10-14T15:20:17Z) - RIGID: Robust Linear Regression with Missing Data [7.638042073679073]
We present a robust framework to perform linear regression with missing entries in the features.
We show that the proposed formulation, which naturally takes into account the dependency between different variables, reduces to a convex program.
In addition to a detailed analysis, we also analyze the behavior of the proposed framework, and present technical discussions.
arXiv Detail & Related papers (2022-05-26T21:10:17Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
We explore the connection between high-dimensional statistics and non-robust optimization in the presence of sparsity constraints.
We develop novel and simple optimization formulations for these problems.
As a corollary, we obtain that any first-order method that efficiently converges to station yields an efficient algorithm for these tasks.
arXiv Detail & Related papers (2021-09-23T17:38:24Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - A Stochastic Subgradient Method for Distributionally Robust Non-Convex
Learning [2.007262412327553]
robustness is with respect to uncertainty in the underlying data distribution.
We show that our technique converges to satisfying perturbationity conditions.
We also illustrate the performance of our algorithm on real datasets.
arXiv Detail & Related papers (2020-06-08T18:52:40Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.