STMT: A Spatial-Temporal Mesh Transformer for MoCap-Based Action Recognition
- URL: http://arxiv.org/abs/2303.18177v2
- Date: Fri, 26 Jul 2024 19:13:29 GMT
- Title: STMT: A Spatial-Temporal Mesh Transformer for MoCap-Based Action Recognition
- Authors: Xiaoyu Zhu, Po-Yao Huang, Junwei Liang, Celso M. de Melo, Alexander Hauptmann,
- Abstract summary: We study the problem of human action recognition using motion capture (MoCap) sequences.
We propose a novel Spatial-Temporal Mesh Transformer (STMT) to directly model the mesh sequences.
The proposed method achieves state-of-the-art performance compared to skeleton-based and point-cloud-based models.
- Score: 50.064502884594376
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We study the problem of human action recognition using motion capture (MoCap) sequences. Unlike existing techniques that take multiple manual steps to derive standardized skeleton representations as model input, we propose a novel Spatial-Temporal Mesh Transformer (STMT) to directly model the mesh sequences. The model uses a hierarchical transformer with intra-frame off-set attention and inter-frame self-attention. The attention mechanism allows the model to freely attend between any two vertex patches to learn non-local relationships in the spatial-temporal domain. Masked vertex modeling and future frame prediction are used as two self-supervised tasks to fully activate the bi-directional and auto-regressive attention in our hierarchical transformer. The proposed method achieves state-of-the-art performance compared to skeleton-based and point-cloud-based models on common MoCap benchmarks. Code is available at https://github.com/zgzxy001/STMT.
Related papers
- ConvMixFormer- A Resource-efficient Convolution Mixer for Transformer-based Dynamic Hand Gesture Recognition [5.311735227179715]
We explore and devise a novel ConvMixFormer architecture for dynamic hand gestures.
The proposed method is evaluated on NVidia Dynamic Hand Gesture and Briareo datasets.
Our model has achieved state-of-the-art results on single and multimodal inputs.
arXiv Detail & Related papers (2024-11-11T16:45:18Z) - sTransformer: A Modular Approach for Extracting Inter-Sequential and Temporal Information for Time-Series Forecasting [6.434378359932152]
We review and categorize existing Transformer-based models into two main types: (1) modifications to the model structure and (2) modifications to the input data.
We propose $textbfsTransformer$, which introduces the Sequence and Temporal Convolutional Network (STCN) to fully capture both sequential and temporal information.
We compare our model with linear models and existing forecasting models on long-term time-series forecasting, achieving new state-of-the-art results.
arXiv Detail & Related papers (2024-08-19T06:23:41Z) - Bringing Masked Autoencoders Explicit Contrastive Properties for Point Cloud Self-Supervised Learning [116.75939193785143]
Contrastive learning (CL) for Vision Transformers (ViTs) in image domains has achieved performance comparable to CL for traditional convolutional backbones.
In 3D point cloud pretraining with ViTs, masked autoencoder (MAE) modeling remains dominant.
arXiv Detail & Related papers (2024-07-08T12:28:56Z) - Deciphering Movement: Unified Trajectory Generation Model for Multi-Agent [53.637837706712794]
We propose a Unified Trajectory Generation model, UniTraj, that processes arbitrary trajectories as masked inputs.
Specifically, we introduce a Ghost Spatial Masking (GSM) module embedded within a Transformer encoder for spatial feature extraction.
We benchmark three practical sports game datasets, Basketball-U, Football-U, and Soccer-U, for evaluation.
arXiv Detail & Related papers (2024-05-27T22:15:23Z) - The Hidden Attention of Mamba Models [54.50526986788175]
The Mamba layer offers an efficient selective state space model (SSM) that is highly effective in modeling multiple domains.
We show that such models can be viewed as attention-driven models.
This new perspective enables us to empirically and theoretically compare the underlying mechanisms to that of the self-attention layers in transformers.
arXiv Detail & Related papers (2024-03-03T18:58:21Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
We propose a novel solution named TransSTAM, which leverages Transformer to model both the appearance features of each object and the spatial-temporal relationships among objects.
The proposed method is evaluated on multiple public benchmarks including MOT16, MOT17, and MOT20, and it achieves a clear performance improvement in both IDF1 and HOTA.
arXiv Detail & Related papers (2022-05-31T01:19:18Z) - Unsupervised Motion Representation Learning with Capsule Autoencoders [54.81628825371412]
Motion Capsule Autoencoder (MCAE) models motion in a two-level hierarchy.
MCAE is evaluated on a novel Trajectory20 motion dataset and various real-world skeleton-based human action datasets.
arXiv Detail & Related papers (2021-10-01T16:52:03Z) - Robust Motion In-betweening [17.473287573543065]
We present a novel, robust transition generation technique that can serve as a new tool for 3D animators.
The system synthesizes high-quality motions that use temporally-sparsers as animation constraints.
We present a custom MotionBuilder plugin that uses our trained model to perform in-betweening in production scenarios.
arXiv Detail & Related papers (2021-02-09T16:52:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.