kNN-Res: Residual Neural Network with kNN-Graph coherence for point
cloud registration
- URL: http://arxiv.org/abs/2304.00050v2
- Date: Mon, 26 Jun 2023 10:50:37 GMT
- Title: kNN-Res: Residual Neural Network with kNN-Graph coherence for point
cloud registration
- Authors: Muhammad S. Battikh, Dillon Hammill, Matthew Cook, Artem Lensky
- Abstract summary: We present a residual neural network-based method for point set registration that preserves the topological structure of the target point set.
The proposed method is illustrated on several 2-dimensional toy examples and tested on high-dimensional flow Cytometry datasets.
- Score: 0.4129225533930966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a residual neural network-based method for point
set registration that preserves the topological structure of the target point
set. Similar to coherent point drift (CPD), the registration (alignment)
problem is viewed as the movement of data points sampled from a target
distribution along a regularized displacement vector field. While the coherence
constraint in CPD is stated in terms of local motion coherence, the proposed
regularization term relies on a global smoothness constraint as a proxy for
preserving local topology. This makes CPD less flexible when the deformation is
locally rigid but globally non-rigid as in the case of multiple objects and
articulate pose registration. A Jacobian-based cost function and
geometric-aware statistical distances are proposed to mitigate these issues.
The latter allows for measuring misalignment between the target and the
reference. The justification for the k-Nearest Neighbour(kNN) graph
preservation of target data, when the Jacobian cost is used, is also provided.
Further, to tackle the registration of high-dimensional point sets, a constant
time stochastic approximation of the Jacobian cost is introduced. The proposed
method is illustrated on several 2-dimensional toy examples and tested on
high-dimensional flow Cytometry datasets where the task is to align two
distributions of cells whilst preserving the kNN-graph in order to preserve the
biological signal of the transformed data. The implementation of the proposed
approach is available at https://github.com/MuhammadSaeedBatikh/kNN-Res_Demo/
under the MIT license.
Related papers
- SPARE: Symmetrized Point-to-Plane Distance for Robust Non-Rigid Registration [76.40993825836222]
We propose SPARE, a novel formulation that utilizes a symmetrized point-to-plane distance for robust non-rigid registration.
The proposed method greatly improves the accuracy of non-rigid registration problems and maintains relatively high solution efficiency.
arXiv Detail & Related papers (2024-05-30T15:55:04Z) - Shape-Graph Matching Network (SGM-net): Registration for Statistical
Shape Analysis [20.58923754314197]
This paper focuses on the statistical analysis of shapes of data objects called shape graphs.
A critical need here is a constrained registration of points (nodes to nodes, edges to edges) across objects.
This paper tackles this registration problem using a novel neural-network architecture.
arXiv Detail & Related papers (2023-08-14T00:42:03Z) - SEM-GAT: Explainable Semantic Pose Estimation using Learned Graph
Attention [10.883346969896621]
This paper proposes a Graph Neural Network(GNN)-based method for exploiting semantics and local geometry to guide the identification of reliable pointcloud registration candidates.
Semantic and morphological features of the environment serve as key reference points for registration, enabling accurate lidar-based pose estimation.
We test our method on the KITTI odometry dataset, achieving competitive accuracy compared to benchmark methods and a higher track smoothness while relying on significantly fewer network parameters.
arXiv Detail & Related papers (2023-08-07T16:43:46Z) - Joint Bayesian Inference of Graphical Structure and Parameters with a
Single Generative Flow Network [59.79008107609297]
We propose in this paper to approximate the joint posterior over the structure of a Bayesian Network.
We use a single GFlowNet whose sampling policy follows a two-phase process.
Since the parameters are included in the posterior distribution, this leaves more flexibility for the local probability models.
arXiv Detail & Related papers (2023-05-30T19:16:44Z) - Learning to Register Unbalanced Point Pairs [10.369750912567714]
Recent 3D registration methods can effectively handle large-scale or partially overlapping point pairs.
We present a novel 3D registration method, called UPPNet, for the unbalanced point pairs.
arXiv Detail & Related papers (2022-07-09T08:03:59Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
We show that gradient flow converges in direction when labels are determined by the sign of a target network with $r$ neurons.
Our result may already hold for mild over- parameterization, where the width is $tildemathcalO(r)$ and independent of the sample size.
arXiv Detail & Related papers (2022-05-18T16:57:10Z) - Index $t$-SNE: Tracking Dynamics of High-Dimensional Datasets with
Coherent Embeddings [1.7188280334580195]
This paper presents a methodology to reuse an embedding to create a new one, where cluster positions are preserved.
The proposed algorithm has the same complexity as the original $t$-SNE to embed new items, and a lower one when considering the embedding of a dataset sliced into sub-pieces.
arXiv Detail & Related papers (2021-09-22T06:45:37Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
Network learns end-to-end mapping between spatial positions and CFD quantities.
Incompress laminar steady flow past a cylinder with various shapes for its cross section is considered.
Network predicts the flow fields hundreds of times faster than our conventional CFD.
arXiv Detail & Related papers (2020-10-15T12:15:02Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
Local features provide region-to-region rather than point-to-point correspondences.
We propose guidelines for effective use of region-to-region matches in the course of a full model estimation pipeline.
Experiments show that affine solvers can achieve accuracy comparable to point-based solvers at faster run-times.
arXiv Detail & Related papers (2020-07-20T12:07:48Z) - Scope Head for Accurate Localization in Object Detection [135.9979405835606]
We propose a novel detector coined as ScopeNet, which models anchors of each location as a mutually dependent relationship.
With our concise and effective design, the proposed ScopeNet achieves state-of-the-art results on COCO.
arXiv Detail & Related papers (2020-05-11T04:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.