kNN-Res: Residual Neural Network with kNN-Graph coherence for point
cloud registration
- URL: http://arxiv.org/abs/2304.00050v2
- Date: Mon, 26 Jun 2023 10:50:37 GMT
- Title: kNN-Res: Residual Neural Network with kNN-Graph coherence for point
cloud registration
- Authors: Muhammad S. Battikh, Dillon Hammill, Matthew Cook, Artem Lensky
- Abstract summary: We present a residual neural network-based method for point set registration that preserves the topological structure of the target point set.
The proposed method is illustrated on several 2-dimensional toy examples and tested on high-dimensional flow Cytometry datasets.
- Score: 0.4129225533930966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a residual neural network-based method for point
set registration that preserves the topological structure of the target point
set. Similar to coherent point drift (CPD), the registration (alignment)
problem is viewed as the movement of data points sampled from a target
distribution along a regularized displacement vector field. While the coherence
constraint in CPD is stated in terms of local motion coherence, the proposed
regularization term relies on a global smoothness constraint as a proxy for
preserving local topology. This makes CPD less flexible when the deformation is
locally rigid but globally non-rigid as in the case of multiple objects and
articulate pose registration. A Jacobian-based cost function and
geometric-aware statistical distances are proposed to mitigate these issues.
The latter allows for measuring misalignment between the target and the
reference. The justification for the k-Nearest Neighbour(kNN) graph
preservation of target data, when the Jacobian cost is used, is also provided.
Further, to tackle the registration of high-dimensional point sets, a constant
time stochastic approximation of the Jacobian cost is introduced. The proposed
method is illustrated on several 2-dimensional toy examples and tested on
high-dimensional flow Cytometry datasets where the task is to align two
distributions of cells whilst preserving the kNN-graph in order to preserve the
biological signal of the transformed data. The implementation of the proposed
approach is available at https://github.com/MuhammadSaeedBatikh/kNN-Res_Demo/
under the MIT license.
Related papers
- ReDiSC: A Reparameterized Masked Diffusion Model for Scalable Node Classification with Structured Predictions [64.17845687013434]
We propose ReDiSC, a structured diffusion model for structured node classification.<n>We show that ReDiSC achieves superior or highly competitive performance compared to state-of-the-art GNN, label propagation, and diffusion-based baselines.<n> Notably, ReDiSC scales effectively to large-scale datasets on which previous structured diffusion methods fail due to computational constraints.
arXiv Detail & Related papers (2025-07-19T04:46:53Z) - Uncovering smooth structures in single-cell data with PCS-guided neighbor embeddings [14.708144124501635]
Single-cell sequencing is revolutionizing biology by enabling detailed investigations of cell-state transitions.<n>It remains challenging to extract smooth, low-dimensional representations from noisy, high-dimensional single-cell data.<n>We introduce NESS, a principled and interpretable machine learning approach to improve NE representations.
arXiv Detail & Related papers (2025-06-27T13:45:55Z) - Amortized Bayesian Local Interpolation NetworK: Fast covariance parameter estimation for Gaussian Processes [0.04660328753262073]
We propose an Amortized Bayesian Local Interpolation NetworK for fast covariance parameter estimation.
The fast prediction time of these networks allows us to bypass the matrix inversion step, creating large computational speedups.
We show significant increases in computational efficiency over comparable scalable GP methodology.
arXiv Detail & Related papers (2024-11-10T01:26:16Z) - Positional Encoder Graph Quantile Neural Networks for Geographic Data [4.277516034244117]
We introduce the Positional Graph Quantile Neural Network (PE-GQNN), a novel method that integrates PE-GNNs, Quantile Neural Networks, and recalibration techniques in a fully nonparametric framework.
Experiments on benchmark datasets demonstrate that PE-GQNN significantly outperforms existing state-of-the-art methods in both predictive accuracy and uncertainty quantification.
arXiv Detail & Related papers (2024-09-27T16:02:12Z) - SPARE: Symmetrized Point-to-Plane Distance for Robust Non-Rigid Registration [76.40993825836222]
We propose SPARE, a novel formulation that utilizes a symmetrized point-to-plane distance for robust non-rigid registration.
The proposed method greatly improves the accuracy of non-rigid registration problems and maintains relatively high solution efficiency.
arXiv Detail & Related papers (2024-05-30T15:55:04Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
We introduce a semi-supervised learning approach based on topological projections in self-organizing maps (SOMs)
Our proposed method first trains SOMs on unlabeled data and then a minimal number of available labeled data points are assigned to key best matching units (BMU)
Our results indicate that the proposed minimally supervised model significantly outperforms traditional regression techniques.
arXiv Detail & Related papers (2024-01-12T22:51:48Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - K-Nearest-Neighbors Induced Topological PCA for scRNA Sequence Data
Analysis [0.3683202928838613]
We propose a topological Principal Components Analysis (tPCA) method by the combination of persistent Laplacian (PL) technique and L$_2,1$ norm regularization.
We further introduce a k-Nearest-Neighbor (kNN) persistent Laplacian technique to improve the robustness of our persistent Laplacian method.
We validate the efficacy of our proposed tPCA and kNN-tPCA methods on 11 diverse scRNA-seq datasets.
arXiv Detail & Related papers (2023-10-23T03:07:50Z) - Shape-Graph Matching Network (SGM-net): Registration for Statistical
Shape Analysis [20.58923754314197]
This paper focuses on the statistical analysis of shapes of data objects called shape graphs.
A critical need here is a constrained registration of points (nodes to nodes, edges to edges) across objects.
This paper tackles this registration problem using a novel neural-network architecture.
arXiv Detail & Related papers (2023-08-14T00:42:03Z) - SEM-GAT: Explainable Semantic Pose Estimation using Learned Graph
Attention [10.883346969896621]
This paper proposes a Graph Neural Network(GNN)-based method for exploiting semantics and local geometry to guide the identification of reliable pointcloud registration candidates.
Semantic and morphological features of the environment serve as key reference points for registration, enabling accurate lidar-based pose estimation.
We test our method on the KITTI odometry dataset, achieving competitive accuracy compared to benchmark methods and a higher track smoothness while relying on significantly fewer network parameters.
arXiv Detail & Related papers (2023-08-07T16:43:46Z) - Joint Bayesian Inference of Graphical Structure and Parameters with a
Single Generative Flow Network [59.79008107609297]
We propose in this paper to approximate the joint posterior over the structure of a Bayesian Network.
We use a single GFlowNet whose sampling policy follows a two-phase process.
Since the parameters are included in the posterior distribution, this leaves more flexibility for the local probability models.
arXiv Detail & Related papers (2023-05-30T19:16:44Z) - Bayesian Renormalization [68.8204255655161]
We present a fully information theoretic approach to renormalization inspired by Bayesian statistical inference.
The main insight of Bayesian Renormalization is that the Fisher metric defines a correlation length that plays the role of an emergent RG scale.
We provide insight into how the Bayesian Renormalization scheme relates to existing methods for data compression and data generation.
arXiv Detail & Related papers (2023-05-17T18:00:28Z) - Neural networks for geospatial data [0.0]
NN-GLS is a new neural network estimation algorithm for the non-linear mean in GP models.
We show that NN-GLS admits a representation as a special type of graph neural network (GNN)
Theoretically, we show that NN-GLS will be consistent for irregularly observed spatially correlated data processes.
arXiv Detail & Related papers (2023-04-18T17:52:23Z) - Orthogonalization of data via Gromov-Wasserstein type feedback for
clustering and visualization [5.44192123671277]
We propose an adaptive approach for clustering and visualization of data by an orthogonalization process.
We prove that the method converges globally to a unique fixpoint for certain parameter values.
We confirm that the method produces biologically meaningful clustering results consistent with human expert classification.
arXiv Detail & Related papers (2022-07-25T15:52:11Z) - Intrinsic dimension estimation for discrete metrics [65.5438227932088]
In this letter we introduce an algorithm to infer the intrinsic dimension (ID) of datasets embedded in discrete spaces.
We demonstrate its accuracy on benchmark datasets, and we apply it to analyze a metagenomic dataset for species fingerprinting.
This suggests that evolutive pressure acts on a low-dimensional manifold despite the high-dimensionality of sequences' space.
arXiv Detail & Related papers (2022-07-20T06:38:36Z) - Learning to Register Unbalanced Point Pairs [10.369750912567714]
Recent 3D registration methods can effectively handle large-scale or partially overlapping point pairs.
We present a novel 3D registration method, called UPPNet, for the unbalanced point pairs.
arXiv Detail & Related papers (2022-07-09T08:03:59Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
We show that gradient flow converges in direction when labels are determined by the sign of a target network with $r$ neurons.
Our result may already hold for mild over- parameterization, where the width is $tildemathcalO(r)$ and independent of the sample size.
arXiv Detail & Related papers (2022-05-18T16:57:10Z) - Bayesian Structure Learning with Generative Flow Networks [85.84396514570373]
In Bayesian structure learning, we are interested in inferring a distribution over the directed acyclic graph (DAG) from data.
Recently, a class of probabilistic models, called Generative Flow Networks (GFlowNets), have been introduced as a general framework for generative modeling.
We show that our approach, called DAG-GFlowNet, provides an accurate approximation of the posterior over DAGs.
arXiv Detail & Related papers (2022-02-28T15:53:10Z) - Index $t$-SNE: Tracking Dynamics of High-Dimensional Datasets with
Coherent Embeddings [1.7188280334580195]
This paper presents a methodology to reuse an embedding to create a new one, where cluster positions are preserved.
The proposed algorithm has the same complexity as the original $t$-SNE to embed new items, and a lower one when considering the embedding of a dataset sliced into sub-pieces.
arXiv Detail & Related papers (2021-09-22T06:45:37Z) - ScRAE: Deterministic Regularized Autoencoders with Flexible Priors for
Clustering Single-cell Gene Expression Data [11.511172015076532]
Clustering single-cell RNA sequence (scRNA-seq) data poses statistical and computational challenges.
Regularized Auto-Encoder (RAE) based deep neural network models have achieved remarkable success in learning robust low-dimensional representations.
We propose a modified RAE framework (called the scRAE) for effective clustering of the single-cell RNA sequencing data.
arXiv Detail & Related papers (2021-07-16T05:13:31Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
Network learns end-to-end mapping between spatial positions and CFD quantities.
Incompress laminar steady flow past a cylinder with various shapes for its cross section is considered.
Network predicts the flow fields hundreds of times faster than our conventional CFD.
arXiv Detail & Related papers (2020-10-15T12:15:02Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
Local features provide region-to-region rather than point-to-point correspondences.
We propose guidelines for effective use of region-to-region matches in the course of a full model estimation pipeline.
Experiments show that affine solvers can achieve accuracy comparable to point-based solvers at faster run-times.
arXiv Detail & Related papers (2020-07-20T12:07:48Z) - Scope Head for Accurate Localization in Object Detection [135.9979405835606]
We propose a novel detector coined as ScopeNet, which models anchors of each location as a mutually dependent relationship.
With our concise and effective design, the proposed ScopeNet achieves state-of-the-art results on COCO.
arXiv Detail & Related papers (2020-05-11T04:00:09Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.