Equivalence of Additive and Multiplicative Coupling in Spiking Neural
Networks
- URL: http://arxiv.org/abs/2304.00112v2
- Date: Tue, 11 Apr 2023 12:14:44 GMT
- Title: Equivalence of Additive and Multiplicative Coupling in Spiking Neural
Networks
- Authors: Georg B\"orner, Fabio Schittler Neves, Marc Timme
- Abstract summary: Spiking neural network models characterize the emergent collective dynamics of circuits of biological neurons.
We show that spiking neural network models with additive coupling are equivalent to models with multiplicative coupling.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural network models characterize the emergent collective dynamics
of circuits of biological neurons and help engineer neuro-inspired solutions
across fields. Most dynamical systems' models of spiking neural networks
typically exhibit one of two major types of interactions: First, the response
of a neuron's state variable to incoming pulse signals (spikes) may be additive
and independent of its current state. Second, the response may depend on the
current neuron's state and multiply a function of the state variable. Here we
reveal that spiking neural network models with additive coupling are equivalent
to models with multiplicative coupling for simultaneously modified intrinsic
neuron time evolution. As a consequence, the same collective dynamics can be
attained by state-dependent multiplicative and constant (state-independent)
additive coupling. Such a mapping enables the transfer of theoretical insights
between spiking neural network models with different types of interaction
mechanisms as well as simpler and more effective engineering applications.
Related papers
- Modeling dynamic neural activity by combining naturalistic video stimuli and stimulus-independent latent factors [5.967290675400836]
We propose a probabilistic model that incorporates video inputs along with stimulus-independent latent factors to capture variability in neuronal responses.
After training and testing our model on mouse V1 neuronal responses, we found that it outperforms video-only models in terms of log-likelihood.
We find that the learned latent factors strongly correlate with mouse behavior, although the model was trained without behavior data.
arXiv Detail & Related papers (2024-10-21T16:01:39Z) - Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
We introduce Artificial Kuramotoy Neurons (AKOrN) as a dynamical alternative to threshold units.
We show that this idea provides performance improvements across a wide spectrum of tasks.
We believe that these empirical results show the importance of our assumptions at the most basic neuronal level of neural representation.
arXiv Detail & Related papers (2024-10-17T17:47:54Z) - Learning dynamic representations of the functional connectome in
neurobiological networks [41.94295877935867]
We introduce an unsupervised approach to learn the dynamic affinities between neurons in live, behaving animals.
We show that our method is able to robustly predict causal interactions between neurons to generate behavior.
arXiv Detail & Related papers (2024-02-21T19:54:25Z) - Learning with Chemical versus Electrical Synapses -- Does it Make a
Difference? [61.85704286298537]
Bio-inspired neural networks have the potential to advance our understanding of neural computation and improve the state-of-the-art of AI systems.
We conduct experiments with autonomous lane-keeping through a photorealistic autonomous driving simulator to evaluate their performance under diverse conditions.
arXiv Detail & Related papers (2023-11-21T13:07:20Z) - Astrocytes as a mechanism for meta-plasticity and contextually-guided
network function [2.66269503676104]
Astrocytes are a ubiquitous and enigmatic type of non-neuronal cell.
Astrocytes may play a more direct and active role in brain function and neural computation.
arXiv Detail & Related papers (2023-11-06T20:31:01Z) - Self-Evolutionary Reservoir Computer Based on Kuramoto Model [1.7072337666116733]
As a biologically inspired neural network, reservoir computing (RC) has unique advantages in processing information.
We propose a structural autonomous development reservoir computing model (sad-RC), which structure can adapt to the specific problem at hand without any human expert knowledge.
arXiv Detail & Related papers (2023-01-25T15:53:39Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
This paper presents the Membrane Potential and Activation Threshold Homeostasis (MPATH) neuron model.
The model allows neurons to maintain a form of dynamic equilibrium by automatically regulating their activity when presented with input.
Experiments demonstrate the model's ability to adapt to and continually learn from its input.
arXiv Detail & Related papers (2021-04-22T04:01:32Z) - The distribution of inhibitory neurons in the C. elegans connectome
facilitates self-optimization of coordinated neural activity [78.15296214629433]
The nervous system of the nematode Caenorhabditis elegans exhibits remarkable complexity despite the worm's small size.
A general challenge is to better understand the relationship between neural organization and neural activity at the system level.
We implemented an abstract simulation model of the C. elegans connectome that approximates the neurotransmitter identity of each neuron.
arXiv Detail & Related papers (2020-10-28T23:11:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.