Modeling dynamic neural activity by combining naturalistic video stimuli and stimulus-independent latent factors
- URL: http://arxiv.org/abs/2410.16136v1
- Date: Mon, 21 Oct 2024 16:01:39 GMT
- Title: Modeling dynamic neural activity by combining naturalistic video stimuli and stimulus-independent latent factors
- Authors: Finn Schmidt, Suhas Shrinivasan, Polina Turishcheva, Fabian H. Sinz,
- Abstract summary: We propose a probabilistic model that incorporates video inputs along with stimulus-independent latent factors to capture variability in neuronal responses.
After training and testing our model on mouse V1 neuronal responses, we found that it outperforms video-only models in terms of log-likelihood.
We find that the learned latent factors strongly correlate with mouse behavior, although the model was trained without behavior data.
- Score: 5.967290675400836
- License:
- Abstract: Understanding how the brain processes dynamic natural stimuli remains a fundamental challenge in neuroscience. Current dynamic neural encoding models either take stimuli as input but ignore shared variability in neural responses, or they model this variability by deriving latent embeddings from neural responses or behavior while ignoring the visual input. To address this gap, we propose a probabilistic model that incorporates video inputs along with stimulus-independent latent factors to capture variability in neuronal responses, predicting a joint distribution for the entire population. After training and testing our model on mouse V1 neuronal responses, we found that it outperforms video-only models in terms of log-likelihood and achieves further improvements when conditioned on responses from other neurons. Furthermore, we find that the learned latent factors strongly correlate with mouse behavior, although the model was trained without behavior data.
Related papers
- QuantFormer: Learning to Quantize for Neural Activity Forecasting in Mouse Visual Cortex [26.499583552980248]
QuantFormer is a transformer-based model specifically designed for forecasting neural activity from two-photon calcium imaging data.
QuantFormer sets a new benchmark in forecasting mouse visual cortex activity.
It demonstrates robust performance and generalization across various stimuli and individuals.
arXiv Detail & Related papers (2024-12-10T07:44:35Z) - Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
It has long been known in both neuroscience and AI that ''binding'' between neurons leads to a form of competitive learning.
We introduce Artificial rethinking together with arbitrary connectivity designs such as fully connected convolutional, or attentive mechanisms.
We show that this idea provides performance improvements across a wide spectrum of tasks such as unsupervised object discovery, adversarial robustness, uncertainty, and reasoning.
arXiv Detail & Related papers (2024-10-17T17:47:54Z) - Exploring Behavior-Relevant and Disentangled Neural Dynamics with Generative Diffusion Models [2.600709013150986]
Understanding the neural basis of behavior is a fundamental goal in neuroscience.
Our approach, named BeNeDiff'', first identifies a fine-grained and disentangled neural subspace.
It then employs state-of-the-art generative diffusion models to synthesize behavior videos that interpret the neural dynamics of each latent factor.
arXiv Detail & Related papers (2024-10-12T18:28:56Z) - BLEND: Behavior-guided Neural Population Dynamics Modeling via Privileged Knowledge Distillation [6.3559178227943764]
We propose BLEND, a behavior-guided neural population dynamics modeling framework via privileged knowledge distillation.
By considering behavior as privileged information, we train a teacher model that takes both behavior observations (privileged features) and neural activities (regular features) as inputs.
A student model is then distilled using only neural activity.
arXiv Detail & Related papers (2024-10-02T12:45:59Z) - WaLiN-GUI: a graphical and auditory tool for neuron-based encoding [73.88751967207419]
Neuromorphic computing relies on spike-based, energy-efficient communication.
We develop a tool to identify suitable configurations for neuron-based encoding of sample-based data into spike trains.
The WaLiN-GUI is provided open source and with documentation.
arXiv Detail & Related papers (2023-10-25T20:34:08Z) - STNDT: Modeling Neural Population Activity with a Spatiotemporal
Transformer [19.329190789275565]
We introduce SpatioTemporal Neural Data Transformer (STNDT), an NDT-based architecture that explicitly models responses of individual neurons.
We show that our model achieves state-of-the-art performance on ensemble level in estimating neural activities across four neural datasets.
arXiv Detail & Related papers (2022-06-09T18:54:23Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
A fundamental goal in neuroscience is to understand the relationship between neural activity and behavior.
We generated a new multimodal dataset consisting of the spontaneous behaviors generated by fruit flies.
This dataset and our new set of augmentations promise to accelerate the application of self-supervised learning methods in neuroscience.
arXiv Detail & Related papers (2021-11-29T15:27:51Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
This paper presents the Membrane Potential and Activation Threshold Homeostasis (MPATH) neuron model.
The model allows neurons to maintain a form of dynamic equilibrium by automatically regulating their activity when presented with input.
Experiments demonstrate the model's ability to adapt to and continually learn from its input.
arXiv Detail & Related papers (2021-04-22T04:01:32Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
We propose a novel neural generative model inspired by the theory of predictive processing in the brain.
In a similar way, artificial neurons in our generative model predict what neighboring neurons will do, and adjust their parameters based on how well the predictions matched reality.
arXiv Detail & Related papers (2020-12-07T01:20:38Z) - Learning identifiable and interpretable latent models of
high-dimensional neural activity using pi-VAE [10.529943544385585]
We propose a method that integrates key ingredients from latent models and traditional neural encoding models.
Our method, pi-VAE, is inspired by recent progress on identifiable variational auto-encoder.
We validate pi-VAE using synthetic data, and apply it to analyze neurophysiological datasets from rat hippocampus and macaque motor cortex.
arXiv Detail & Related papers (2020-11-09T22:00:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.