論文の概要: Inductive Relation Prediction from Relational Paths and Context with
Hierarchical Transformers
- arxiv url: http://arxiv.org/abs/2304.00215v3
- Date: Mon, 10 Jul 2023 10:27:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 18:35:25.038808
- Title: Inductive Relation Prediction from Relational Paths and Context with
Hierarchical Transformers
- Title(参考訳): 階層変換器を用いた関係経路と文脈からの帰納的関係予測
- Authors: Jiaang Li, Quan Wang, Zhendong Mao
- Abstract要約: 本稿では,エンティティ間の関係と固有性の両方をキャプチャする手法を提案する。
因果関係は関係意味論にのみ依存しており、完全に帰納的な設定に自然に一般化することができる。
実験では、2つの完全帰納的データセットの8つのバージョンサブセットのほぼすべてのベースラインに対して、Actionalは一貫してパフォーマンスが向上する。
- 参考スコア(独自算出の注目度): 23.07740200588382
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Relation prediction on knowledge graphs (KGs) is a key research topic.
Dominant embedding-based methods mainly focus on the transductive setting and
lack the inductive ability to generalize to new entities for inference.
Existing methods for inductive reasoning mostly mine the connections between
entities, i.e., relational paths, without considering the nature of head and
tail entities contained in the relational context. This paper proposes a novel
method that captures both connections between entities and the intrinsic nature
of entities, by simultaneously aggregating RElational Paths and cOntext with a
unified hieRarchical Transformer framework, namely REPORT. REPORT relies solely
on relation semantics and can naturally generalize to the fully-inductive
setting, where KGs for training and inference have no common entities. In the
experiments, REPORT performs consistently better than all baselines on almost
all the eight version subsets of two fully-inductive datasets. Moreover. REPORT
is interpretable by providing each element's contribution to the prediction
results.
- Abstract(参考訳): 知識グラフ(KG)に関する関係予測は重要な研究トピックである。
支配的な埋め込みベースの手法は、主にトランスダクティブな設定に焦点を当て、推論のために新しいエンティティに一般化するインダクティブな能力を欠いている。
帰納的推論の既存の方法は、主に関係的文脈に含まれる頭と尾のエンティティの性質を考慮せずに、関係的経路(relational paths)というエンティティ間の接続を掘り下げる。
本稿では,リレーショナルパスとコンテキストを同時に集約することにより,エンティティ間の接続とエンティティの固有性の両方をキャプチャする新しい手法,すなわちレポートを提案する。
因果関係論のみに依拠し、訓練や推論のためのKGが共通の実体を持たない完全帰納的設定に自然に一般化することができる。
実験では、2つの完全帰納的データセットの8つのバージョンサブセットのほぼすべてのベースラインに対して、Actionalは一貫してパフォーマンスが向上する。
さらに。
レポートは、各要素の予測結果への貢献を提供することによって解釈できる。
関連論文リスト
- Anchoring Path for Inductive Relation Prediction in Knowledge Graphs [69.81600732388182]
APSTはAPとCPを統一されたSentence Transformerアーキテクチャの入力として扱う。
我々は3つの公開データセット上でAPSTを評価し、36のトランスダクティブ、インダクティブ、および数ショットの実験的設定のうち30の最先端(SOTA)性能を達成する。
論文 参考訳(メタデータ) (2023-12-21T06:02:25Z) - Learning Complete Topology-Aware Correlations Between Relations for Inductive Link Prediction [121.65152276851619]
関係性間の意味的相関は本質的にエッジレベルとエンティティ非依存であることを示す。
本研究では,関係関係のトポロジ・アウェア・コレレーションをモデル化するための新しいサブグラフベース手法,TACOを提案する。
RCNのポテンシャルをさらに活用するために, 完全コモンニアインダストリアルサブグラフを提案する。
論文 参考訳(メタデータ) (2023-09-20T08:11:58Z) - Exploiting Global Semantic Similarities in Knowledge Graphs by
Relational Prototype Entities [55.952077365016066]
実証的な観察では、頭と尾のエンティティが同じ関係で結ばれている場合、しばしば同様の意味的属性を共有する。
我々は、textittextbfrelational prototype entityと呼ばれる仮想ノードのセットを導入する新しいアプローチを提案する。
エンティティの埋め込みを、関連するプロトタイプの埋め込みに近づけることで、私たちのアプローチは、エンティティのグローバルな意味的類似性を効果的に促進できる。
論文 参考訳(メタデータ) (2022-06-16T09:25:33Z) - On Neural Architecture Inductive Biases for Relational Tasks [76.18938462270503]
合成ネットワーク一般化(CoRelNet)と呼ばれる類似度分布スコアに基づく簡単なアーキテクチャを導入する。
単純なアーキテクチャの選択は、分布外一般化において既存のモデルより優れていることが分かる。
論文 参考訳(メタデータ) (2022-06-09T16:24:01Z) - Document-level Relation Extraction with Context Guided Mention
Integration and Inter-pair Reasoning [18.374097786748834]
文書レベルの関係抽出(DRE)は、2つの実体間の関係を認識することを目的としている。
これまでの研究では、言及の統合についてはほとんど研究されていないが、これは問題となるかもしれない。
本稿では,コンテキストガイドメンション統合とペア間推論という2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2022-01-13T08:00:23Z) - Informed Multi-context Entity Alignment [27.679124991733907]
Informed Multi-context Entity Alignment (IMEA)モデルを提案する。
特にTransformerを導入し、関係、経路、近傍のコンテキストを柔軟にキャプチャする。
総論的推論は、埋め込み類似性と関係性/整合性の両方の機能に基づいてアライメント確率を推定するために用いられる。
いくつかのベンチマークデータセットの結果は、既存の最先端エンティティアライメント手法と比較して、IMEAモデルの優位性を示している。
論文 参考訳(メタデータ) (2022-01-02T06:29:30Z) - Learning First-Order Rules with Relational Path Contrast for Inductive
Relation Reasoning [8.344644072431898]
グラフ畳み込みネットワーク (GCN) を用いた関係経路のコントラストを考慮した帰納的推論法を提案する。
RPC-IRはまず2つのエンティティ間のリレーショナルパスを抽出し、それらの表現を学習し、革新的にコントラスト戦略を導入する。
論文 参考訳(メタデータ) (2021-10-17T12:39:01Z) - Link Prediction on N-ary Relational Data Based on Relatedness Evaluation [61.61555159755858]
我々は,n-aryリレーショナルデータ上でリンク予測を行うNaLPという手法を提案する。
各 n 個の関係事実を、その役割と役割と値のペアの集合として表現する。
実験結果は,提案手法の有効性と有用性を検証した。
論文 参考訳(メタデータ) (2021-04-21T09:06:54Z) - HittER: Hierarchical Transformers for Knowledge Graph Embeddings [85.93509934018499]
複雑な知識グラフにおける実体と関係の表現を学習するためにHittを提案する。
実験結果から,Hittは複数リンク予測において最先端の新たな結果が得られることがわかった。
さらに,HittをBERTに統合する簡単なアプローチを提案し,その効果を2つのFreebaseファクトイド対応データセットで示す。
論文 参考訳(メタデータ) (2020-08-28T18:58:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。