Inductive Relation Prediction from Relational Paths and Context with
Hierarchical Transformers
- URL: http://arxiv.org/abs/2304.00215v3
- Date: Mon, 10 Jul 2023 10:27:06 GMT
- Title: Inductive Relation Prediction from Relational Paths and Context with
Hierarchical Transformers
- Authors: Jiaang Li, Quan Wang, Zhendong Mao
- Abstract summary: This paper proposes a novel method that captures both connections between entities and the intrinsic nature of entities.
REPORT relies solely on relation semantics and can naturally generalize to the fully-inductive setting.
In the experiments, REPORT performs consistently better than all baselines on almost all the eight version subsets of two fully-inductive datasets.
- Score: 23.07740200588382
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Relation prediction on knowledge graphs (KGs) is a key research topic.
Dominant embedding-based methods mainly focus on the transductive setting and
lack the inductive ability to generalize to new entities for inference.
Existing methods for inductive reasoning mostly mine the connections between
entities, i.e., relational paths, without considering the nature of head and
tail entities contained in the relational context. This paper proposes a novel
method that captures both connections between entities and the intrinsic nature
of entities, by simultaneously aggregating RElational Paths and cOntext with a
unified hieRarchical Transformer framework, namely REPORT. REPORT relies solely
on relation semantics and can naturally generalize to the fully-inductive
setting, where KGs for training and inference have no common entities. In the
experiments, REPORT performs consistently better than all baselines on almost
all the eight version subsets of two fully-inductive datasets. Moreover. REPORT
is interpretable by providing each element's contribution to the prediction
results.
Related papers
- Anchoring Path for Inductive Relation Prediction in Knowledge Graphs [69.81600732388182]
APST takes both APs and CPs as the inputs of a unified Sentence Transformer architecture.
We evaluate APST on three public datasets and achieve state-of-the-art (SOTA) performance in 30 of 36 transductive, inductive, and few-shot experimental settings.
arXiv Detail & Related papers (2023-12-21T06:02:25Z) - Learning Complete Topology-Aware Correlations Between Relations for Inductive Link Prediction [121.65152276851619]
We show that semantic correlations between relations are inherently edge-level and entity-independent.
We propose a novel subgraph-based method, namely TACO, to model Topology-Aware COrrelations between relations.
To further exploit the potential of RCN, we propose Complete Common Neighbor induced subgraph.
arXiv Detail & Related papers (2023-09-20T08:11:58Z) - Exploiting Global Semantic Similarities in Knowledge Graphs by
Relational Prototype Entities [55.952077365016066]
An empirical observation is that the head and tail entities connected by the same relation often share similar semantic attributes.
We propose a novel approach, which introduces a set of virtual nodes called textittextbfrelational prototype entities.
By enforcing the entities' embeddings close to their associated prototypes' embeddings, our approach can effectively encourage the global semantic similarities of entities.
arXiv Detail & Related papers (2022-06-16T09:25:33Z) - On Neural Architecture Inductive Biases for Relational Tasks [76.18938462270503]
We introduce a simple architecture based on similarity-distribution scores which we name Compositional Network generalization (CoRelNet)
We find that simple architectural choices can outperform existing models in out-of-distribution generalizations.
arXiv Detail & Related papers (2022-06-09T16:24:01Z) - Document-level Relation Extraction with Context Guided Mention
Integration and Inter-pair Reasoning [18.374097786748834]
Document-level Relation Extraction (DRE) aims to recognize the relations between two entities.
Few previous studies have investigated the mention integration, which may be problematic.
We propose two novel techniques, Context Guided Mention Integration and Inter-pair Reasoning.
arXiv Detail & Related papers (2022-01-13T08:00:23Z) - Informed Multi-context Entity Alignment [27.679124991733907]
We propose an Informed Multi-context Entity Alignment (IMEA) model to address these issues.
In particular, we introduce Transformer to flexibly capture the relation, path, and neighborhood contexts.
holistic reasoning is used to estimate alignment probabilities based on both embedding similarity and the relation/entity functionality.
Results on several benchmark datasets demonstrate the superiority of our IMEA model compared with existing state-of-the-art entity alignment methods.
arXiv Detail & Related papers (2022-01-02T06:29:30Z) - Learning First-Order Rules with Relational Path Contrast for Inductive
Relation Reasoning [8.344644072431898]
We propose a graph convolutional network (GCN)-based approach for interpretable inductive reasoning with relational path contrast.
RPC-IR firstly extracts relational paths between two entities and learns representations of them, and then innovatively introduces a contrastive strategy.
arXiv Detail & Related papers (2021-10-17T12:39:01Z) - Link Prediction on N-ary Relational Data Based on Relatedness Evaluation [61.61555159755858]
We propose a method called NaLP to conduct link prediction on n-ary relational data.
We represent each n-ary relational fact as a set of its role and role-value pairs.
Experimental results validate the effectiveness and merits of the proposed methods.
arXiv Detail & Related papers (2021-04-21T09:06:54Z) - HittER: Hierarchical Transformers for Knowledge Graph Embeddings [85.93509934018499]
We propose Hitt to learn representations of entities and relations in a complex knowledge graph.
Experimental results show that Hitt achieves new state-of-the-art results on multiple link prediction.
We additionally propose a simple approach to integrate Hitt into BERT and demonstrate its effectiveness on two Freebase factoid answering datasets.
arXiv Detail & Related papers (2020-08-28T18:58:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.