Safety in Graph Machine Learning: Threats and Safeguards
- URL: http://arxiv.org/abs/2405.11034v1
- Date: Fri, 17 May 2024 18:11:11 GMT
- Title: Safety in Graph Machine Learning: Threats and Safeguards
- Authors: Song Wang, Yushun Dong, Binchi Zhang, Zihan Chen, Xingbo Fu, Yinhan He, Cong Shen, Chuxu Zhang, Nitesh V. Chawla, Jundong Li,
- Abstract summary: Despite their societal benefits, recent research highlights significant safety concerns associated with the widespread use of Graph ML models.
Lacking safety-focused designs, these models can produce unreliable predictions, demonstrate poor generalizability, and compromise data confidentiality.
In high-stakes scenarios such as financial fraud detection, these vulnerabilities could jeopardize both individuals and society at large.
- Score: 84.26643884225834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Machine Learning (Graph ML) has witnessed substantial advancements in recent years. With their remarkable ability to process graph-structured data, Graph ML techniques have been extensively utilized across diverse applications, including critical domains like finance, healthcare, and transportation. Despite their societal benefits, recent research highlights significant safety concerns associated with the widespread use of Graph ML models. Lacking safety-focused designs, these models can produce unreliable predictions, demonstrate poor generalizability, and compromise data confidentiality. In high-stakes scenarios such as financial fraud detection, these vulnerabilities could jeopardize both individuals and society at large. Therefore, it is imperative to prioritize the development of safety-oriented Graph ML models to mitigate these risks and enhance public confidence in their applications. In this survey paper, we explore three critical aspects vital for enhancing safety in Graph ML: reliability, generalizability, and confidentiality. We categorize and analyze threats to each aspect under three headings: model threats, data threats, and attack threats. This novel taxonomy guides our review of effective strategies to protect against these threats. Our systematic review lays a groundwork for future research aimed at developing practical, safety-centered Graph ML models. Furthermore, we highlight the significance of safe Graph ML practices and suggest promising avenues for further investigation in this crucial area.
Related papers
- Using Retriever Augmented Large Language Models for Attack Graph Generation [0.7619404259039284]
This paper explores the approach of leveraging large language models (LLMs) to automate the generation of attack graphs.
It shows how to utilize Common Vulnerabilities and Exposures (CommonLLMs) to create attack graphs from threat reports.
arXiv Detail & Related papers (2024-08-11T19:59:08Z) - Investigating Adversarial Attacks in Software Analytics via Machine Learning Explainability [11.16693333878553]
This study investigates the relationship between ML explainability and adversarial attacks to measure the robustness of ML models in software analytics tasks.
Our experiments, involving six datasets, three ML explainability techniques, and seven ML models, demonstrate that ML explainability can be used to conduct successful adversarial attacks on ML models in software analytics tasks.
arXiv Detail & Related papers (2024-08-07T23:21:55Z) - A Survey on Vulnerability of Federated Learning: A Learning Algorithm
Perspective [8.941193384980147]
We focus on threat models targeting the learning process of FL systems.
Defense strategies have evolved from using a singular metric to excluding malicious clients.
Recent endeavors subtly alter the least significant weights in local models to bypass defense measures.
arXiv Detail & Related papers (2023-11-27T18:32:08Z) - GraphCloak: Safeguarding Task-specific Knowledge within Graph-structured Data from Unauthorized Exploitation [61.80017550099027]
Graph Neural Networks (GNNs) are increasingly prevalent in a variety of fields.
Growing concerns have emerged regarding the unauthorized utilization of personal data.
Recent studies have shown that imperceptible poisoning attacks are an effective method of protecting image data from such misuse.
This paper introduces GraphCloak to safeguard against the unauthorized usage of graph data.
arXiv Detail & Related papers (2023-10-11T00:50:55Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
Machine learning (ML) sees an increasing prevalence of being used in the internet-of-things (IoT)-based smart grid.
adversarial distortion injected into the power signal will greatly affect the system's normal control and operation.
It is imperative to conduct vulnerability assessment for MLsgAPPs applied in the context of safety-critical power systems.
arXiv Detail & Related papers (2023-08-30T03:29:26Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - Privacy-preserving Graph Analytics: Secure Generation and Federated
Learning [72.90158604032194]
We focus on the privacy-preserving analysis of graph data, which provides the crucial capacity to represent rich attributes and relationships.
We discuss two directions, namely privacy-preserving graph generation and federated graph learning, which can jointly enable the collaboration among multiple parties each possessing private graph data.
arXiv Detail & Related papers (2022-06-30T18:26:57Z) - A Survey of Trustworthy Graph Learning: Reliability, Explainability, and
Privacy Protection [136.71290968343826]
Trustworthy graph learning (TwGL) aims to solve the above problems from a technical viewpoint.
In contrast to conventional graph learning research which mainly cares about model performance, TwGL considers various reliability and safety aspects.
arXiv Detail & Related papers (2022-05-20T08:10:35Z) - Machine Learning Security against Data Poisoning: Are We There Yet? [23.809841593870757]
This article reviews data poisoning attacks that compromise the training data used to learn machine learning models.
We discuss how to mitigate these attacks using basic security principles, or by deploying ML-oriented defensive mechanisms.
arXiv Detail & Related papers (2022-04-12T17:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.