論文の概要: Modelling customer churn for the retail industry in a deep learning
based sequential framework
- arxiv url: http://arxiv.org/abs/2304.00575v1
- Date: Sun, 2 Apr 2023 16:48:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-04 17:21:51.428721
- Title: Modelling customer churn for the retail industry in a deep learning
based sequential framework
- Title(参考訳): 深層学習に基づくシーケンシャルフレームワークによる小売業の顧客チャーンモデリング
- Authors: Juan Pablo Equihua, Henrik Nordmark, Maged Ali, Berthold Lausen
- Abstract要約: この研究は、顧客が非契約条件下で小売企業との購入をやめるリスクがあるかを予測するための、深いサバイバル・フレームワークを提供する。
個人レベルのサバイバルモデルを得ることで、個々の顧客の行動のみに基づいて、購入行動の個人レベルのサバイバルモデルを得ることができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As retailers around the world increase efforts in developing targeted
marketing campaigns for different audiences, predicting accurately which
customers are most likely to churn ahead of time is crucial for marketing teams
in order to increase business profits. This work presents a deep survival
framework to predict which customers are at risk of stopping to purchase with
retail companies in non-contractual settings. By leveraging the survival model
parameters to be learnt by recurrent neural networks, we are able to obtain
individual level survival models for purchasing behaviour based only on
individual customer behaviour and avoid time-consuming feature engineering
processes usually done when training machine learning models.
- Abstract(参考訳): 世界中の小売業者が、さまざまなオーディエンスを対象としたターゲットマーケティングキャンペーンの開発に取り組みを増やす中、ビジネス利益を上げるために、マーケティングチームにとって、どの顧客を前倒しにするかを正確に予測することが不可欠である。
この研究は、顧客が非契約条件下で小売企業との購入をやめるリスクがあるかを予測するための、深いサバイバルフレームワークを提供する。
繰り返しニューラルネットワークによって学習されるサバイバルモデルパラメータを活用することで、個々の顧客の振る舞いのみに基づいて行動を購入するための個別レベルのサバイバルモデルを得ることができ、マシンラーニングモデルをトレーニングする際に通常行われる時間を要する機能エンジニアリングプロセスを回避することができる。
関連論文リスト
- Emulating Full Client Participation: A Long-Term Client Selection Strategy for Federated Learning [48.94952630292219]
本稿では,クライアントの完全参加によって達成されるパフォーマンスをエミュレートする新しいクライアント選択戦略を提案する。
1ラウンドで、クライアントサブセットとフルクライアントセット間の勾配空間推定誤差を最小化し、クライアントを選択する。
複数ラウンド選択において、類似したデータ分布を持つクライアントが選択される頻度に類似することを保証する、新しい個性制約を導入する。
論文 参考訳(メタデータ) (2024-05-22T12:27:24Z) - On the Resurgence of Recurrent Models for Long Sequences -- Survey and
Research Opportunities in the Transformer Era [59.279784235147254]
この調査は、Recurrenceの統一の傘の下に構築されたこれらのトレンドの概要を提供することを目的としている。
長いシーケンスを処理するという考え方を捨てる際に顕著になる新しい研究機会を強調している。
論文 参考訳(メタデータ) (2024-02-12T23:55:55Z) - Modeling the Telemarketing Process using Genetic Algorithms and Extreme
Boosting: Feature Selection and Cost-Sensitive Analytical Approach [0.06906005491572399]
本研究は、顧客による長期預金の意欲をモデル化する上で、テレマーケティングデータの力を活用することを目的とする。
ポルトガルの銀行と社会経済指標の実際のデータは、遠隔販売による意思決定プロセスのモデル化に使用される。
論文 参考訳(メタデータ) (2023-10-30T08:46:55Z) - Modelling customer lifetime-value in the retail banking industry [0.0]
顧客生涯価値をモデル化するための一般的な枠組みを提案する。
長期にわたる契約と製品中心の顧客関係を持つ業界に適用される。
このフレームワークは、任意の時間的地平線と製品に基づく正当性モデル上でのCLV予測を促進する新しい方法である。
論文 参考訳(メタデータ) (2023-04-06T12:54:33Z) - Customer Churn Prediction Model using Explainable Machine Learning [0.0]
この論文の主な目的は、チャーンする可能性が最も高い潜在的な顧客を予測するのに役立つ、ユニークな顧客チャーン予測モデルを開発することである。
各種木に基づく機械学習手法とアルゴリズムの性能評価と解析を行った。
モデル説明可能性と透明性を改善するため,提案手法では,特徴の組合せについてシェープ値を計算する手法を提案する。
論文 参考訳(メタデータ) (2023-03-02T04:45:57Z) - Customer Profiling, Segmentation, and Sales Prediction using AI in
Direct Marketing [0.0]
本稿では,顧客プロファイルシステムを開発するためのデータマイニング前処理手法を提案する。
本研究の主な成果は、顧客プロファイルの作成と商品の販売予測である。
論文 参考訳(メタデータ) (2023-02-03T14:45:09Z) - Robust Quantity-Aware Aggregation for Federated Learning [72.59915691824624]
悪意のあるクライアントは、モデル更新を害し、モデルアグリゲーションにおけるモデル更新の影響を増幅するために大量の要求を行う。
FLの既存の防御メソッドは、悪意のあるモデル更新を処理する一方で、すべての量の良性を扱うか、単にすべてのクライアントの量を無視/停止するだけである。
本稿では,フェデレーション学習のためのロバストな量認識アグリゲーションアルゴリズムであるFedRAを提案し,局所的なデータ量を認識してアグリゲーションを行う。
論文 参考訳(メタデータ) (2022-05-22T15:13:23Z) - Approaching sales forecasting using recurrent neural networks and
transformers [57.43518732385863]
深層学習技術を用いて,日・店・店レベルでの顧客販売予測問題に対処する3つの方法を開発した。
実験結果から,データ前処理を最小限に抑えた単純なシーケンスアーキテクチャを用いて,優れた性能を実現することができることを示す。
提案した解は約0.54の RMSLE を達成し、Kaggle コンペティションで提案された問題に対する他のより具体的な解と競合する。
論文 参考訳(メタデータ) (2022-04-16T12:03:52Z) - Characterization of Frequent Online Shoppers using Statistical Learning
with Sparsity [54.26540039514418]
本研究は,小売分析と統計学習のアイデアを疎結合に組み合わせ,買い物客のオンラインギフトストアへの買い物嗜好を学習する方法を報告する。
論文 参考訳(メタデータ) (2021-11-11T05:36:39Z) - Predicting Customer Lifetime Values -- ecommerce use case [0.0]
この研究は、まず'buy-till-you-die'統計モデルを使用して顧客の振る舞いを予測し、その後、同じデータセット上でニューラルネットワークを使用して結果を比較する、顧客の将来の購入を予測する2つのアプローチを比較する。
論文 参考訳(メタデータ) (2021-02-10T23:17:16Z) - Face to Purchase: Predicting Consumer Choices with Structured Facial and
Behavioral Traits Embedding [53.02059906193556]
消費者の顔の特徴と履歴に基づいて消費者の購入を予測することを提案する。
階層型埋め込みネットワークに基づく半教師付きモデルを設計し、消費者の高レベルな特徴を抽出する。
実世界のデータセットを用いた実験結果から,消費者の購買行動を予測するために,顔情報の導入による肯定的な効果が示された。
論文 参考訳(メタデータ) (2020-07-14T06:06:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。