Polaritonic Ultrastrong Coupling: Quantum Entanglement in Ground State
- URL: http://arxiv.org/abs/2304.00680v1
- Date: Mon, 3 Apr 2023 01:58:23 GMT
- Title: Polaritonic Ultrastrong Coupling: Quantum Entanglement in Ground State
- Authors: Qingtian Miao and G.S. Agarwal
- Abstract summary: We study the ultrastrong coupling between the elementary excitations of matter and microcavity modes.
The amount of quantum entanglement in the ground state is quite significant in the ultrastrong coupling regime.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ultrastrong coupling between the elementary excitations of matter and
microcavity modes is studied in a fully analytical quantum-mechanical
theoretical framework. The elementary excitation could be phonons, excitons,
plasmons, etc. From the diagonalization of the Hamiltonian, we obtain the
ground state of the polariton Hamiltonian. The ground state belongs to the
Gaussian class. Using the Gaussian property we calculate the quantum
entanglement in the ground state. We use two different measures for quantum
entanglement -- entanglement entropy and the logarithmic negativity parameter
and obtain rather simple analytical expressions for the entanglement measures.
Our findings show that the amount of quantum entanglement in the ground state
is quite significant in the ultrastrong coupling regime. It can be obtained
from the measurement of the polariton frequencies.
Related papers
- Quantum Entanglement in the Rabi Model with the Presence of the $A^{2}$ Term [0.0]
The quantum Rabi model (QRM) is used to describe the light-matter interaction at the quantum level in Cavity Quantum Electrodynamics (Cavity QED)
In this study, we comparatively analyze the behaviors of the QRM and the influence of the $A2$ term in the light-matter quantum Hamiltonian.
arXiv Detail & Related papers (2024-09-06T18:30:32Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - The quantum Hall effect under the influence of gravity and inertia: A
unified approach [44.99833362998488]
We examine how both the integer and the fractional quantum Hall effects behave under a combined influence of gravity and inertia.
The general Hamiltonian for describing the combined effect of gravity, rotation and inertia on the electrons of a Hall sample is then built and the eigenstates are obtained.
arXiv Detail & Related papers (2024-03-11T18:01:55Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Effect of Quantum Statistics on Computational Power of Atomic Quantum
Annealers [6.013018381423765]
We study how the quantum statistics affects the computational power of quantum annealing.
We find that the bosonic quantum annealer outperforms the fermionic case.
Our theoretical finding could shed light on constructing atomic quantum annealers using Rydberg atoms in optical lattices.
arXiv Detail & Related papers (2022-09-01T03:33:20Z) - Quantifying Electron Entanglement Faithfully [0.0]
Entanglement is one of the most fascinating concepts of modern physics.
We derive a formula for the relative entropy of entanglement between electron orbitals.
Its broad applicability in the quantum sciences is demonstrated.
arXiv Detail & Related papers (2022-07-07T15:32:12Z) - Experimental measurement of the divergent quantum metric of an
exceptional point [10.73176455098217]
We report the first experimental measurement of the quantum metric in a non-Hermitian system.
The specific platform under study is an organic microcavity with exciton-polariton eigenstates, which demonstrate exceptional points.
arXiv Detail & Related papers (2020-11-24T11:31:03Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Light-matter hybrid-orbital-based first-principles methods: the
influence of the polariton statistics [0.0]
We show the importance of the resulting hybrid Fermi-Bose statistics of the polaritons.
We also present a general prescription how to extend a given first-principles approach to polaritons.
We find that the more delocalized the bound-state wave function of the particles is, the stronger it reacts to photons.
arXiv Detail & Related papers (2020-05-05T09:01:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.