Lithium-ion Battery Online Knee Onset Detection by Matrix Profile
- URL: http://arxiv.org/abs/2304.00691v1
- Date: Mon, 3 Apr 2023 02:51:47 GMT
- Title: Lithium-ion Battery Online Knee Onset Detection by Matrix Profile
- Authors: Kate Qi Zhou, Yan Qin, Chau Yuen
- Abstract summary: The knee onset, which marks the initiation of the accelerated degradation rate, is crucial in providing an early warning of the battery's performance changes.
An online knee onset identification method is developed by exploiting the temporal information within the discharge data.
The proposed SOH estimation model achieves enhanced estimation results with a root mean squared error as low as 0.22%.
- Score: 16.637948430296227
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Lithium-ion batteries (LiBs) degrade slightly until the knee onset, after
which the deterioration accelerates to end of life (EOL). The knee onset, which
marks the initiation of the accelerated degradation rate, is crucial in
providing an early warning of the battery's performance changes. However, there
is only limited literature on online knee onset identification. Furthermore, it
is good to perform such identification using easily collected measurements. To
solve these challenges, an online knee onset identification method is developed
by exploiting the temporal information within the discharge data. First, the
temporal dynamics embedded in the discharge voltage cycles from the slight
degradation stage are extracted by the dynamic time warping. Second, the
anomaly is exposed by Matrix Profile during subsequence similarity search. The
knee onset is detected when the temporal dynamics of the new cycle exceed the
control limit and the profile index indicates a change in regime. Finally, the
identified knee onset is utilized to categorize the battery into long-range or
short-range categories by its strong correlation with the battery's EOL cycles.
With the support of the battery categorization and the training data acquired
under the same statistic distribution, the proposed SOH estimation model
achieves enhanced estimation results with a root mean squared error as low as
0.22%.
Related papers
- Understanding Warmup-Stable-Decay Learning Rates: A River Valley Loss Landscape Perspective [66.80315289020487]
Warmup-Stable-Decay (WSD) schedule uses a constant learning rate to produce a main branch of iterates that can continue indefinitely without a pre-specified compute budget.
We show that pretraining loss exhibits a river valley landscape, which resembles a deep valley with a river at its bottom.
Inspired by the theory, we introduce WSD-S, a variant of WSD that reuses previous checkpoints' decay phases and keeps only one main branch.
arXiv Detail & Related papers (2024-10-07T16:49:39Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - Forecasting Particle Accelerator Interruptions Using Logistic LASSO
Regression [62.997667081978825]
Unforeseen particle accelerator interruptions, also known as interlocks, lead to abrupt operational changes despite being necessary safety measures.
We propose a simple yet powerful binary classification model aiming to forecast such interruptions.
The model is formulated as logistic regression penalized by at least absolute shrinkage and selection operator.
arXiv Detail & Related papers (2023-03-15T23:11:30Z) - Digital Twin for Real-time Li-ion Battery State of Health Estimation
with Partially Discharged Cycling Data [16.637948430296227]
The state of health (SOH) estimation of Lithium-ion batteries (LIBs) has a close relationship with the degradation performance.
The proposed digital twin solution consists of three core components to enable real-time SOH estimation.
The method yields the real-time SOH estimation with errors less than 1% for most sampling times in ongoing cycles.
arXiv Detail & Related papers (2022-12-09T01:30:10Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - A Transferable Multi-stage Model with Cycling Discrepancy Learning for
Lithium-ion Battery State of Health Estimation [18.980782609740082]
Multiple degradation patterns of a complete life cycle of a battery make it challenging to pursue transfer learning (TL)
A transferable multi-stage SOH estimation model is proposed to perform TL across batteries in the same stage, consisting of four steps.
The proposed method outperforms its competitive algorithms in various transfer tasks for a run-to-failure benchmark with three batteries.
arXiv Detail & Related papers (2022-09-01T02:59:46Z) - Transfer Learning-based State of Health Estimation for Lithium-ion
Battery with Cycle Synchronization [16.637948430296227]
Accurately estimating a battery's state of health (SOH) helps prevent battery-powered applications from failing unexpectedly.
With the superiority of reducing the data requirement of model training for new batteries, transfer learning (TL) emerges as a promising machine learning approach.
This paper proposes an interpretable TL-based SOH estimation method by exploiting the temporal dynamic to assist transfer learning.
arXiv Detail & Related papers (2022-08-23T21:40:40Z) - Investigation of Different Calibration Methods for Deep Speaker
Embedding based Verification Systems [66.61691401921296]
This paper presents an investigation over several methods of score calibration for deep speaker embedding extractors.
An additional focus of this research is to estimate the impact of score normalization on the calibration performance of the system.
arXiv Detail & Related papers (2022-03-28T21:22:22Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - Lithium-ion Battery State of Health Estimation based on Cycle
Synchronization using Dynamic Time Warping [13.19976118887128]
State of health (SOH) estimation plays an essential role in battery-powered applications to avoid unexpected breakdowns due to battery capacity fading.
This paper proposes an innovative cycle synchronization way to change the existing coordinate system using dynamic time warping.
By exploiting the time information of the time series, the proposed method embeds the time index and the original measurements into a novel indicator to reflect the battery degradation status.
arXiv Detail & Related papers (2021-09-28T02:53:54Z) - Invariant learning based multi-stage identification for Lithium-ion
battery performance degradation [16.637948430296227]
In this paper, an invariant learning based method is proposed to investigate whether the battery performance degradation follows a fixed behavior.
A novel multi-stage division strategy is put forward to judge the existent of multiple degradation behaviors.
The proposed method not only enables insights into degradation mechanism from data perspective, but also will be helpful to related topics, such as stage of health.
arXiv Detail & Related papers (2020-08-12T06:09:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.