SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier
- URL: http://arxiv.org/abs/2110.02169v1
- Date: Fri, 1 Oct 2021 23:01:20 GMT
- Title: SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier
- Authors: Adelson Chua, Michael I. Jordan, and Rikky Muller
- Abstract summary: Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
- Score: 68.8204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Implantable devices that record neural activity and detect seizures have been
adopted to issue warnings or trigger neurostimulation to suppress epileptic
seizures. Typical seizure detection systems rely on high-accuracy
offline-trained machine learning classifiers that require manual retraining
when seizure patterns change over long periods of time. For an implantable
seizure detection system, a low power, at-the-edge, online learning algorithm
can be employed to dynamically adapt to the neural signal drifts, thereby
maintaining high accuracy without external intervention. This work proposes
SOUL: Stochastic-gradient-descent-based Online Unsupervised Logistic regression
classifier. After an initial offline training phase, continuous online
unsupervised classifier updates are applied in situ, which improves sensitivity
in patients with drifting seizure features. SOUL was tested on two human
electroencephalography (EEG) datasets: the CHB-MIT scalp EEG dataset, and a
long (>100 hours) NeuroVista intracranial EEG dataset. It was able to achieve
an average sensitivity of 97.5% and 97.9% for the two datasets respectively, at
>95% specificity. Sensitivity improved by at most 8.2% on long-term data when
compared to a typical seizure detection classifier. SOUL was fabricated in
TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification
energy efficiency, which is at least 24x more efficient than state-of-the-art.
Related papers
- Real-time Sub-milliwatt Epilepsy Detection Implemented on a Spiking Neural Network Edge Inference Processor [5.021433741823472]
This study aims to detect interictal and ictal periods of epileptic seizures using a spiking neural network (SNN)
Our proposed method has a high test accuracy of 93.3% and 92.9% when classifying ictal and interictal periods.
Our work provides a new solution for seizure detection, and it is expected to be widely used in portable and wearable devices in the future.
arXiv Detail & Related papers (2024-10-22T01:55:02Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - Epilepsy Seizure Detection and Prediction using an Approximate Spiking
Convolutional Transformer [12.151626573534001]
This paper presents a neuromorphic Spiking Convolutional Transformer, named Spiking Conformer, to detect and predict epileptic seizure segments.
We report evaluation results from the Spiking Conformer model using the Boston Children's Hospital-MIT (CHB-MIT) EEG dataset.
Using raw EEG data as input, the proposed Spiking Conformer achieved an average sensitivity rate of 94.9% and a specificity rate of 99.3% for the seizure detection task.
arXiv Detail & Related papers (2024-01-21T19:23:56Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Neural Network Based Epileptic EEG Detection and Classification [0.0]
A model has been proposed that preserves the true nature of an EEG signal in form of textual one-dimensional vector.
The proposed model achieves a state of art performance for Bonn University dataset giving an average sensitivity, specificity of 81% and 81.4% respectively.
arXiv Detail & Related papers (2021-11-05T05:25:40Z) - An End-to-End Deep Learning Approach for Epileptic Seizure Prediction [4.094649684498489]
We propose an end-to-end deep learning solution using a convolutional neural network (CNN)
Overall sensitivity, false prediction rate, and area under receiver operating characteristic curve reaches 93.5%, 0.063/h, 0.981 and 98.8%, 0.074/h, 0.988 on two datasets respectively.
arXiv Detail & Related papers (2021-08-17T05:49:43Z) - Transfer Learning of Deep Spatiotemporal Networks to Model Arbitrarily
Long Videos of Seizures [58.720142291102135]
Detailed analysis of seizure semiology is critical for management of epilepsy patients.
We present GESTURES, a novel architecture combining convolutional neural networks (CNNs) and recurrent neural networks (RNNs)
We show that an STCNN trained on a HAR dataset can be used in combination with an RNN to accurately represent arbitrarily long videos of seizures.
arXiv Detail & Related papers (2021-06-22T18:40:31Z) - An electronic neuromorphic system for real-time detection of High
Frequency Oscillations (HFOs) in intracranial EEG [0.0]
We present a neuromorphic system that combines a neural recording headstage with a signal-to-spike conversion circuit and a multi-core spiking neural network architecture on the same die for recording, processing, and detecting High Frequency Oscillations (HFO)
We show how the neuromorphic system can reliably detect HFOs: the system predicts postsurgical seizure outcome with state-of-the-art accuracy, specificity and sensitivity (78%, 100%, and 33% respectively)
This is the first feasibility study towards identifying relevant features in intracranial human data in real-time, on-chip, using event-based processors and
arXiv Detail & Related papers (2020-09-23T16:40:44Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.