Combinatorial Optimization enriched Machine Learning to solve the
Dynamic Vehicle Routing Problem with Time Windows
- URL: http://arxiv.org/abs/2304.00789v1
- Date: Mon, 3 Apr 2023 08:23:09 GMT
- Title: Combinatorial Optimization enriched Machine Learning to solve the
Dynamic Vehicle Routing Problem with Time Windows
- Authors: L\'eo Baty, Kai Jungel, Patrick S. Klein, Axel Parmentier, Maximilian
Schiffer
- Abstract summary: We propose a novel machine learning pipeline that incorporates an optimization layer.
We apply this pipeline to a dynamic vehicle routing problem with waves, which was recently promoted in the EURO Meets NeurIPS Competition at NeurIPS 2022.
Our methodology ranked first in this competition, outperforming all other approaches in solving the proposed dynamic vehicle routing problem.
- Score: 5.4807970361321585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rise of e-commerce and increasing customer requirements, logistics
service providers face a new complexity in their daily planning, mainly due to
efficiently handling same day deliveries. Existing multi-stage stochastic
optimization approaches that allow to solve the underlying dynamic vehicle
routing problem are either computationally too expensive for an application in
online settings, or -- in the case of reinforcement learning -- struggle to
perform well on high-dimensional combinatorial problems. To mitigate these
drawbacks, we propose a novel machine learning pipeline that incorporates a
combinatorial optimization layer. We apply this general pipeline to a dynamic
vehicle routing problem with dispatching waves, which was recently promoted in
the EURO Meets NeurIPS Vehicle Routing Competition at NeurIPS 2022. Our
methodology ranked first in this competition, outperforming all other
approaches in solving the proposed dynamic vehicle routing problem. With this
work, we provide a comprehensive numerical study that further highlights the
efficacy and benefits of the proposed pipeline beyond the results achieved in
the competition, e.g., by showcasing the robustness of the encoded policy
against unseen instances and scenarios.
Related papers
- Learn to Solve Vehicle Routing Problems ASAP: A Neural Optimization Approach for Time-Constrained Vehicle Routing Problems with Finite Vehicle Fleet [0.0]
We propose an NCO approach to solve a time-constrained capacitated VRP with a finite vehicle fleet size.
The method is able to find adequate and cost-efficient solutions, showing both flexibility and robust generalizations.
arXiv Detail & Related papers (2024-11-07T15:16:36Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Dual Policy Reinforcement Learning for Real-time Rebalancing in Bike-sharing Systems [13.083156894368532]
Bike-sharing systems play a crucial role in easing traffic congestion and promoting healthier lifestyles.
This study introduces a novel approach to address the real-time rebalancing problem with a fleet of vehicles.
It employs a dual policy reinforcement learning algorithm that decouples inventory and routing decisions.
arXiv Detail & Related papers (2024-06-02T21:05:23Z) - Eco-Driving Control of Connected and Automated Vehicles using Neural
Network based Rollout [0.0]
Connected and autonomous vehicles have the potential to minimize energy consumption.
Existing deterministic and methods created to solve the eco-driving problem generally suffer from high computational and memory requirements.
This work proposes a hierarchical multi-horizon optimization framework implemented via a neural network.
arXiv Detail & Related papers (2023-10-16T23:13:51Z) - Hybrid Genetic Search for Dynamic Vehicle Routing with Time Windows [0.0]
We adapt the Hybrid Genetic Search (HGS) algorithm, a successful solution for VRPTW, to the dynamic variant.
Our approach modifies these components for DVRPTW, attempting to balance solution quality and constraints on future customer arrivals.
arXiv Detail & Related papers (2023-07-21T11:16:49Z) - Roulette-Wheel Selection-Based PSO Algorithm for Solving the Vehicle
Routing Problem with Time Windows [58.891409372784516]
This paper presents a novel form of the PSO methodology that uses the Roulette Wheel Method (RWPSO)
Experiments using the Solomon VRPTW benchmark datasets on the RWPSO demonstrate that RWPSO is competitive with other state-of-the-art algorithms from the literature.
arXiv Detail & Related papers (2023-06-04T09:18:02Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
In this paper, we investigate how to learn policies that can automatically adjust the configuration parameters of every cell in the network in response to the changes in the user demand.
Our solution combines existent methods for offline learning and adapts them in a principled way to overcome crucial challenges arising in this context.
arXiv Detail & Related papers (2021-11-11T11:31:20Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
Large ride-hailing platforms, such as DiDi, Uber and Lyft, connect tens of thousands of vehicles in a city to millions of ride demands throughout the day.
We propose a unified value-based dynamic learning framework (V1D3) for tackling both tasks.
arXiv Detail & Related papers (2021-05-18T19:22:24Z) - Deep Policy Dynamic Programming for Vehicle Routing Problems [89.96386273895985]
We propose Deep Policy Dynamic Programming (D PDP) to combine the strengths of learned neurals with those of dynamic programming algorithms.
D PDP prioritizes and restricts the DP state space using a policy derived from a deep neural network, which is trained to predict edges from example solutions.
We evaluate our framework on the travelling salesman problem (TSP) and the vehicle routing problem (VRP) and show that the neural policy improves the performance of (restricted) DP algorithms.
arXiv Detail & Related papers (2021-02-23T15:33:57Z) - Learning Vehicle Routing Problems using Policy Optimisation [4.093722933440819]
State-of-the-art approaches learn a policy using reinforcement learning, and the learnt policy acts as a pseudo solver.
These approaches have demonstrated good performance in some cases, but given the large search space typical of routing problem, they can converge too quickly to poor policy.
We propose entropy regularised reinforcement learning (ERRL) that supports exploration by providing more policies.
arXiv Detail & Related papers (2020-12-24T14:18:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.