論文の概要: Artificial neural networks and time series of counts: A class of
nonlinear INGARCH models
- arxiv url: http://arxiv.org/abs/2304.01025v1
- Date: Mon, 3 Apr 2023 14:26:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-04 14:51:42.610032
- Title: Artificial neural networks and time series of counts: A class of
nonlinear INGARCH models
- Title(参考訳): 人工ニューラルネットワークと時系列数:非線形INGARCHモデルの一類
- Authors: Malte Jahn
- Abstract要約: INGARCHモデルを人工知能ニューラルネットワーク(ANN)応答関数と組み合わせて非線形INGARCHモデルのクラスを得る方法を示す。
ANNフレームワークは、対応するニューラルモデルの退化バージョンとして、既存のINGARCHモデルの解釈を可能にする。
有界数と非有界数の時系列の実証分析により、ニューラルINGARCHモデルは、情報損失の観点から、合理的に退化した競合モデルより優れていることが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series of counts are frequently analyzed using generalized
integer-valued autoregressive models with conditional heteroskedasticity
(INGARCH). These models employ response functions to map a vector of past
observations and past conditional expectations to the conditional expectation
of the present observation. In this paper, it is shown how INGARCH models can
be combined with artificial neural network (ANN) response functions to obtain a
class of nonlinear INGARCH models. The ANN framework allows for the
interpretation of many existing INGARCH models as a degenerate version of a
corresponding neural model. Details on maximum likelihood estimation, marginal
effects and confidence intervals are given. The empirical analysis of time
series of bounded and unbounded counts reveals that the neural INGARCH models
are able to outperform reasonable degenerate competitor models in terms of the
information loss.
- Abstract(参考訳): 条件付きヘテロスケダスティック性(INGARCH)を持つ一般化整数値自己回帰モデルを用いて、時系列のカウントを頻繁に解析する。
これらのモデルは応答関数を用いて過去の観測ベクトルと過去の条件予測を現在の観測の条件予測にマッピングする。
本稿では,INGARCHモデルと人工ニューラルネットワーク(ANN)の応答関数を組み合わせることで,非線形INGARCHモデルのクラスを得る方法について述べる。
ANNフレームワークは、対応するニューラルモデルの退化バージョンとして、既存のINGARCHモデルの解釈を可能にする。
最大確率推定、限界効果、信頼区間の詳細が与えられる。
有界数と非有界数の時系列の実証分析により、ニューラルINGARCHモデルは、情報損失の観点から、合理的に退化した競合モデルより優れていることが示された。
関連論文リスト
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - Neural Network-Based Piecewise Survival Models [0.3999851878220878]
ニューラルネットワークに基づくサバイバルモデルのファミリが提示される。
これらのモデルは、一般的に使用される離散時間および部分指数モデルの拡張と見なすことができる。
論文 参考訳(メタデータ) (2024-03-27T15:08:00Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
異なる因果発見は、データ生成プロセスを一連のモジュールに分解するために提案されている。
このようなモジュラニューラル因果モデルの一般化と適応性能について検討する。
我々の分析では、モジュラーニューラル因果モデルが、低データレギュレーションにおけるゼロおよび少数ショットの適応において、他のモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T17:12:32Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
我々は、無限確率的地平線を持つ環境力学の予測モデルである$gamma$-modelを導入する。
トレーニングタイムとテストタイムの複合的なエラーの間には、そのトレーニングが避けられないトレードオフを反映しているかについて議論する。
論文 参考訳(メタデータ) (2020-10-27T17:54:12Z) - Neural Jump Ordinary Differential Equations: Consistent Continuous-Time
Prediction and Filtering [6.445605125467574]
我々は、連続的に学習するデータ駆動型アプローチを提供するNeural Jump ODE(NJ-ODE)を紹介する。
我々のモデルは、$L2$-Optimalオンライン予測に収束することを示す。
我々は,より複雑な学習タスクにおいて,モデルがベースラインより優れていることを示す。
論文 参考訳(メタデータ) (2020-06-08T16:34:51Z) - Dynamic Time Warping as a New Evaluation for Dst Forecast with Machine
Learning [0.0]
ニューラルネットワークをトレーニングして、発生時刻の暴風雨時指数を1時間から6時間まで予測する。
相関係数とRMSEによるモデルの結果の検査により,最新の論文に匹敵する性能を示した。
2つの時系列が互いに時間的にずれているかどうかを測定するために,新しい手法を提案する。
論文 参考訳(メタデータ) (2020-06-08T15:14:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。