Artificial neural networks and time series of counts: A class of
nonlinear INGARCH models
- URL: http://arxiv.org/abs/2304.01025v1
- Date: Mon, 3 Apr 2023 14:26:16 GMT
- Title: Artificial neural networks and time series of counts: A class of
nonlinear INGARCH models
- Authors: Malte Jahn
- Abstract summary: It is shown how INGARCH models can be combined with artificial neural network (ANN) response functions to obtain a class of nonlinear INGARCH models.
The ANN framework allows for the interpretation of many existing INGARCH models as a degenerate version of a corresponding neural model.
The empirical analysis of time series of bounded and unbounded counts reveals that the neural INGARCH models are able to outperform reasonable degenerate competitor models in terms of the information loss.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series of counts are frequently analyzed using generalized
integer-valued autoregressive models with conditional heteroskedasticity
(INGARCH). These models employ response functions to map a vector of past
observations and past conditional expectations to the conditional expectation
of the present observation. In this paper, it is shown how INGARCH models can
be combined with artificial neural network (ANN) response functions to obtain a
class of nonlinear INGARCH models. The ANN framework allows for the
interpretation of many existing INGARCH models as a degenerate version of a
corresponding neural model. Details on maximum likelihood estimation, marginal
effects and confidence intervals are given. The empirical analysis of time
series of bounded and unbounded counts reveals that the neural INGARCH models
are able to outperform reasonable degenerate competitor models in terms of the
information loss.
Related papers
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
We propose a Supervised Score-based Model (SSM) which can be viewed as a gradient boosting algorithm combining score matching.
We provide a theoretical analysis of learning and sampling for SSM to balance inference time and prediction accuracy.
Our model outperforms existing models in both accuracy and inference time.
arXiv Detail & Related papers (2024-11-02T07:06:53Z) - Neural Network-Based Piecewise Survival Models [0.3999851878220878]
A family of neural network-based survival models is presented.
The models can be seen as an extension of the commonly used discrete-time and piecewise exponential models.
arXiv Detail & Related papers (2024-03-27T15:08:00Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
Differentiable causal discovery has proposed to factorize the data generating process into a set of modules.
We study the generalization and adaption performance of such modular neural causal models.
Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes.
arXiv Detail & Related papers (2022-06-09T17:12:32Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
We introduce the $gamma$-model, a predictive model of environment dynamics with an infinite probabilistic horizon.
We discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors.
arXiv Detail & Related papers (2020-10-27T17:54:12Z) - Neural Jump Ordinary Differential Equations: Consistent Continuous-Time
Prediction and Filtering [6.445605125467574]
We introduce the Neural Jump ODE (NJ-ODE) that provides a data-driven approach to learn, continuously in time.
We show that our model converges to the $L2$-optimal online prediction.
We experimentally show that our model outperforms the baselines in more complex learning tasks.
arXiv Detail & Related papers (2020-06-08T16:34:51Z) - Dynamic Time Warping as a New Evaluation for Dst Forecast with Machine
Learning [0.0]
We train a neural network to make a forecast of the disturbance storm time index at origin time $t$ with a forecasting horizon of 1 up to 6 hours.
Inspection of the model's results with the correlation coefficient and RMSE indicated a performance comparable to the latest publications.
A new method is proposed to measure whether two time series are shifted in time with respect to each other.
arXiv Detail & Related papers (2020-06-08T15:14:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.